256K x 36, 512K x 18 3.3V Synchronous ZBT[™] SRAMs ZBT[™] Feature 3.3V I/O, Burst Counter Pipelined Outputs

IDT71V65603/Z IDT71V65803/Z

Features

- 256K x 36, 512K x 18 memory configurations
- Supports high performance system speed 150MHz (3.8ns Clock-to-Data Access)
- ZBT[™] Feature No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control OE
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write (BW1 BW4) control (May tie active)
- Three chip enables for simple depth expansion
- 3.3V power supply (±5%)
- 3.3V I/O Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array(fBGA).

Description

The IDT71V65603/5803 are 3.3V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMS. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name ZBT^{TM} , or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.

The IDT71V65603/5803 contain data I/O, address and control signal registers. Output enable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable (CEN) pin allows operation of the IDT71V65603/5803 to be suspended as long as necessary. All synchronous inputs are ignored when (CEN) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{CE1}$, CE2, $\overline{CE2}$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/ \overline{LD} is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The data bus will tri-state two cycles after chip is deselected or a write is initiated.

The IDT71V65603/5803 have an on-chip burst counter. In the burst mode, the IDT71V65603/5803 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the LBO input pin. The LBO pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address (ADV/LD = LOW) or increment the internal burst counter (ADV/LD = HIGH).

The IDT71V65603/5803 SRAM utilize IDT's latest high-performance CMOS process, and are packaged in a JEDEC Standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA).

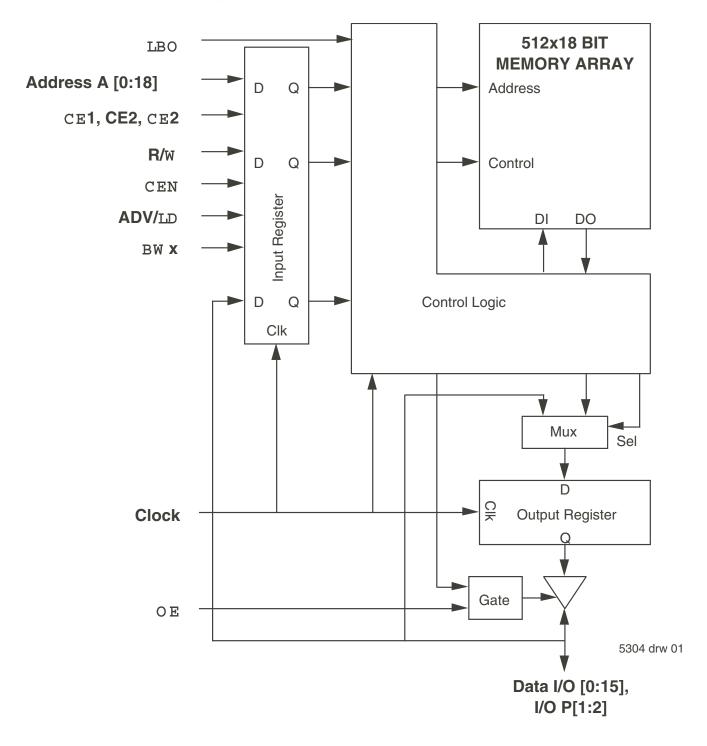
PIII Descriptio	n Summar y		
A0-A18	Address Inputs	Input	Synchronous
CE1, CE2, CE2	Chip Enables	Input	Synchronous
ŌĒ	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
CEN	Clock Enable	Input	Synchronous
\overline{BW}_{1} , \overline{BW}_{2} , \overline{BW}_{3} , \overline{BW}_{4}	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/LD	Advance burst address / Load new address	Input	Synchronous
LBO	Linear / Interleaved Burst Order	Input	Static
ZZ	Sleep Mode	Input	Asynchronous
VO0-VO31, VOP1-VOP4	Data Input / Output	Ι/O	Synchronous
VDD, VDDQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Pin Description Summary

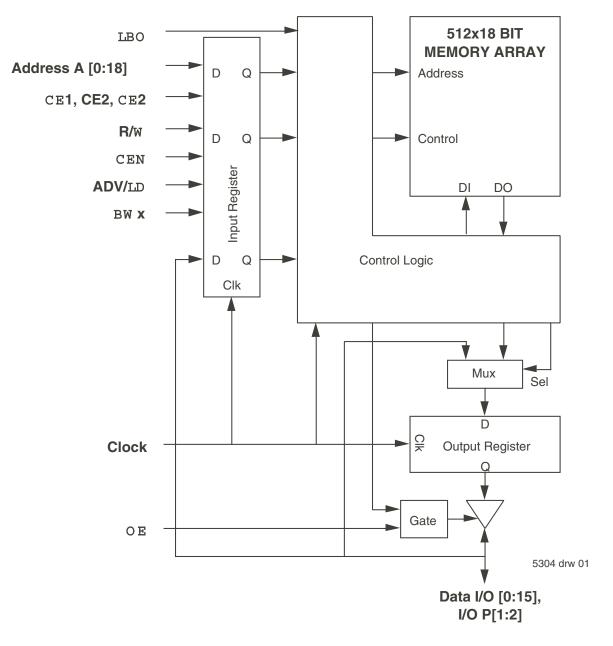
5304 tbl 01

OCTOBER 2008

5304tbl 02


Pin Definitions⁽¹⁾

Symbol	Pin Function	I/O	Active	Description
A0-A18	Address Inputs	Ι	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/ $\overline{\text{LD}}$ low, $\overline{\text{CEN}}$ low, and true chip enables.
ADV/LD	Advance / Load	Ι	N/A	ADV/\overline{LD} is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/\overline{LD} is low with the chip deselected, any burst in progress is terminated. When ADV/\overline{LD} is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/\overline{LD} is sampled high.
R/W	Read / Write	I	N/A	R/\overline{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
CEN	Clock Enable	Ι	LOW	Synchronous Clock Enable Input. When \overline{CEN} is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of \overline{CEN} sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, \overline{CEN} must be sampled low at rising edge of clock.
BW1-BW4	Individual Byte Write Enables	Ι	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R/ \overline{W} and ADV/ \overline{LD} are sampled low) the appropriate byte write signal (\overline{BW}_1 - \overline{BW}_4) must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R/ \overline{W} is sampled high. The appropriate byte(s) of data are written into the device two cycles later. \overline{BW}_1 - \overline{BW}_4 can all be tied low if always doing write to the entire 36-bit word.
CE1, CE2	Chip Enables	Ι	LOW	Synchronous active low chip enable. \overline{CE}_1 and \overline{CE}_2 are used with CE ₂ to enable the IDT71V65603/5803. (\overline{CE}_1 or \overline{CE}_2 sampled high or CE ₂ sampled low) and ADV/ \overline{LD} low at the rising edge of clock, initiates a deselect cycle. The ZBT ^M has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE2	Chip Enable	Ι	HIGH	Synchronous active high chip enable. CE ₂ is used with \overline{CE}_1 and \overline{CE}_2 to enable the chip. CE ₂ has inverted polarity but otherwise identical to \overline{CE}_1 and \overline{CE}_2 .
CLK	Clock	Ι	N/A	This is the clock input to the IDT71V65603/5803. Except for \overline{OE} , all timing references for the device are made with respect to the rising edge of CLK.
I/O0-I/O31 I/Op1-I/Op4	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
LBO	Linear Burst Order	I	LOW	Burst order selection input. When $\overline{\text{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\text{LBO}}$ is low the Linear burst sequence is selected. $\overline{\text{LBO}}$ is a static input and it must not change during device operation.
ŌĒ	Output Enable	I	LOW	Asynchronous output enable. \overline{OE} must be low to read data from the 71V65603/5803. When \overline{OE} is high the I/O pins are in a high-impedance state. \overline{OE} does not need to be actively controlled for read and write cycles. In normal operation, \overline{OE} can be tied low.
ZZ	Sleep Mode	Ι	N/A	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the 71V65603/5803 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
Vdd	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.


NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Functional Block Diagram

Recommended DC Operating Conditions

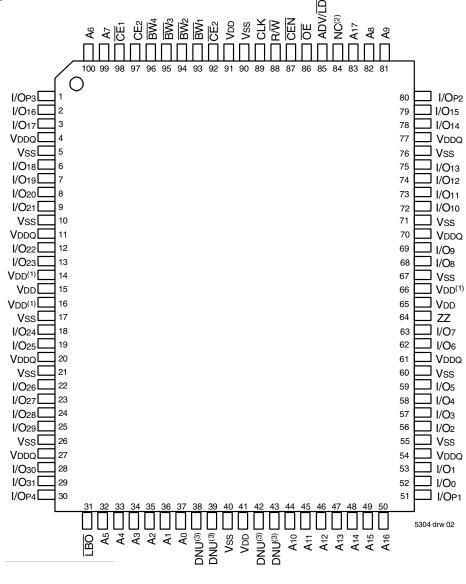
Symbol	Parameter	Min.	Тур.	Max.	Unit			
Vdd	Core Supply Voltage	3.135	3.3	3.465	۷			
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	۷			
Vss	Supply Voltage	0	0	0	۷			
Vн	Input High Voltage - Inputs	2.0		VDD+0.3	V			
Vн	Input High Voltage - I/O	2.0	_	VDDQ+0.3	۷			
VIL	Input Low Voltage	-0.3 ⁽¹⁾		0.8	۷			
5304 tbl 0								

NOTES:

1. VIL (min.) = -1.0V for pulse width less than tcyc/2, once per cycle.

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs

Commercial and Industrial Temperature Range

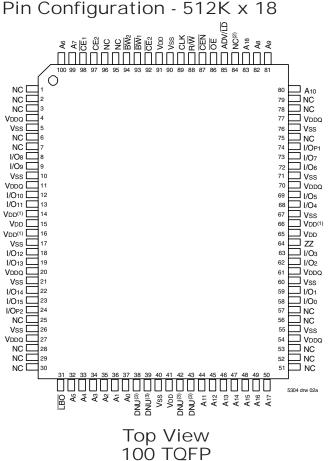

Recommended Operating Temperature and Supply Voltage

Grade	Ambient Temperature ⁽¹⁾	Vss	Vdd	VDDQ			
Commercial	0° C to +70° C	0V	3.3V±5%	3.3V±5%			
Industrial	-40°C to +85°C	0V	3.3V±5%	3.3V±5%			
NOTES: 5304 tbl 05							

NOTES:

1. During production testing, the case temperature equals the ambient temperature.

Pin Configuration - 256K x 36



Top View 100 TQFP

NOTES:

- 1. Pins 14, 16 and 66 do not have to be connected directly to VDD as long as the input voltage is \geq VIH.
- 2. Pin 84 is reserved for a future 16M.
- 3. DNU=Do not use. Pins 38, 39, 42 and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs

NOTES:

- Pins 14, 16 and 66 do not have to be connected directly to VDD as long as the input voltage is ≥ VIH.
- 2. Pin 84 is reserved for a future 16M.
- DNU=Do not use. Pins 38, 39, 42 and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (Vbb).

100 TQFP Capacitance⁽¹⁾

$(TA = +25^{\circ} C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	5	рF
C⊮o	I/O Capacitance	Vout = 3dV	7	pF

119 BGA Capacitance⁽¹⁾

 $(TA = +25^{\circ} C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	ViN = 3dV	7	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF
			1	5304 tbl 07a

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTE RM ^(3,6)	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM ^(4,6)	Terminal Voltage with Respect to GND	-0.5 to Vdd +0.5	V
Vterm ^(5,6)	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA ⁽⁷⁾	Commercial Operating Temperature	-0 to +70	٥C
	Industrial Operating Temperature	-40 to +85	٥C
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	2.0	W
Ιουτ	DC Output Current	50	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VDD terminals only.

3. VDDQ terminals only

4. Input terminals only.

5. I/O terminals only.

6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp

7. During production testing, the case temperature equals TA.

165 fBGA Capacitance⁽¹⁾

$(TA = +25^{\circ} C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	TBD	pF
Cı/o	I/O Capacitance	Vout = 3dV	TBD	pF

5304 tbl 07b

5304 tbl 06

Pin Configuration - 256K X 36, 119 BGA

	1	2	3	4	5	6	7
A		O A6 O	0 A4 O	O NC ⁽²⁾ O	О Ав О	O A16 O	
в			A3 O		A9 O		NC
С	NC	A7	A2	VDD	A12	A15 O	NC
D		I/OP3	VSS	NC	VSS		I/O15
Е	I/O17 O	I/OP3 O I/O18	A2 O VSS O VSS O		A12 O VSS O VSS O	I/O13 O	I/O14
F		I/O19		OE OE	VSS	I/O12	NC NC NC I/O15 I/O14 VDDQ VDDQ
G	I/O20 O	I/O21 O	BW3	A17	BW2 O	I/O11 O	I/O10
н	1/O22 O	I/O23	VSS O		VSS	I/O9 O	
J			VDD(1)				
к	1/O24 O	I/O26 O	VSS O	CLK O	VSS O	I/O6 O	V07
L	I/O25 O	I/O27 O	BW4 O	NC	BW1 O	I/O4	
м	VDDQ	I/O28	VSS O	CEN	Vss	I/O3 O	
Ν	I/O29 O	I/O30 O	Vss O	O A1 O	Vss O Vss	I/O3 O I/O2 O	I/O1 O
Ρ	I/O31	I/O30 O I/OP4		A0 O	0	I/OP1	1/00 O
R	NC O	A5 O	LBO	A0 O VDD O A11 O	VDD(1)	A13 O	NC O
т	NC O	NC	A10 O (2)	A11 O	A14 O (2)	NC	O ⁰ O ⁰ O ⁰ O ⁰ OVO
υL	VDDQ	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	VDDQ
							5304 drw 13A

Top View

Pin Configuration - 512K X 18, 119 BGA

_	1	2	3	4	5	6	7
	0	0	0	0	0	0	0
A	VDDQ	A 6	A 4	NC(2)	A8	A16	VDDQ
	0	0	0	O` ´	0	0	0
В	NC	CE2	A3	ADV/LD	A 9	CE2	NC
	0	0	0	0	0	0	0
C	NC	A7	A2	VDD	A13	A17	NC
	0	0	0	0	0	0	0
D	I/O8	NC	Vss	NC	Vss	I/OP1	NC
	0	0	0	0	0	0	0
E	NC	I/O9	Vss	CE1	Vss	NC	I/O7
	0	0	0	0	0	0	0
F	VDDQ	NC	VSS	ŌĒ	VSS	I/O6	VDDQ
	0	0	0	0	0	0	0
G	NC	I/O10	BW2	A18	Vss	NC	I/O5
	0	0	0	0	0	0	0
H	I/O11	NC	Vss	R/W	Vss	I/O4	NC
	0	0	0	0	0	0	0
J	VDDQ	VDD	VDD(1)	VDD	VDD(1)	VDD	VDDQ
	0	0	0	0	0	0	0
ĸ	NC	I/O12	VSS	CLK	VSS	NC	I/O3
	0	0	0	0	0	0	0
L	I/O13	NC	Vss	NC	BW1	I/O2	NC
	0	0	0	0	0	0	0
М	VDDQ	I/O14	Vss	CEN	Vss	NC	VDDQ
	0	Õ	0	Ö	0	0	0
N	I/O15	NC	Vss	A1	Vss	I/O 1	NC
	0	0	0	0	0	0	0
P	NC	I/OP2	Vss	A0	Vss	NC	1/00
	Õ	õ	0	Ö	0	õ	Õ
R	NC	A5	LBO	VDD	VDD(1)	A12	NC
	ŏ	õ	°C	Ö	Ö	Õ	ö
т	NC	A10	A15	NC	A14	A11	ZZ
•	ŏ	•		Õ.	•	0	ő
U	VDDQ	DNU ⁽³⁾	0 DNU ⁽³⁾	ONU ⁽³⁾		DNU ⁽³⁾	VDDQ
- [-		n Via		-	5304 drw 131
			10				

Top View

NOTES:

1. J3, J5, and R5 do not have to be directly connected to VDD as long as the input voltage is \geq VIH.

2. A4 is reserved for future 16M.

3. DNU = Do not use. Pin U2, U3, U4, U5 and U6 are reserved for respective JTAG pins: TMS, TDI, TCK, TDO and TRST. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 256K X 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
А	NC ⁽²⁾	A7	CE1	BW3	B ₩2	CE2	CEN	ADV/LD	A17	A8	NC
В	NC	A6	CE2	BW4	BW1	CLK	R/W	ŌĒ	NC ⁽²⁾	A9	NC ⁽²⁾
С	I /ОР3	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	I/Op2
D	I ∕O17	VO16	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O15	VO14
Ε	I ∕O19	V O18	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O13	VO12
F	I /O21	V O20	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O11	V O10
G	I/O ₂₃	VO22	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I ∕O9	I/O8
Н	VDD ⁽¹⁾	VDD ⁽¹⁾	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	V O25	VO24	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	VO7	I/O6
К	I ∕O27	VO26	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	VO5	I/O4
L	I ∕O29	VO28	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I∕O3	I/O2
М	I/O31	VO30	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I /O1	I/Oo
Ν	I/OP4	NC	VDDQ	Vss	DNU ⁽³⁾	NC	VDD ⁽¹⁾	Vss	VDDQ	NC	VOP1
Ρ	NC	NC ⁽²⁾	A 5	A2	DNU ⁽³⁾	A1	DNU ⁽³⁾	A10	A13	A14	NC
R	LBO	NC ⁽²⁾	A4	A3	DNU ⁽³⁾	A0	DNU ⁽³⁾	A11	A12	A15	A16

5304 tbl 25a

5304 tb125b

Pin Configuration - 512K X 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
А	NC ⁽²⁾	A7	CE1	BW2	NC	CE2	CEN	ADV/LD	A18	A8	A10
В	NC	A6	CE2	NC	BW1	CLK	R/W	ŌĒ	NC ⁽²⁾	A9	NC ⁽²⁾
С	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	I/Op1
D	NC	I/O8	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	VO7
Е	NC	I/O9	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	VO6
F	NC	I ∕O10	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	VO5
G	NC	I/O11	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	VO4
Н	VDD ⁽¹⁾	VDD ⁽¹⁾	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	I ∕O12	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I∕O3	NC
Κ	I ∕O13	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	VO2	NC
L	I ∕O14	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I /O1	NC
Μ	I ∕O15	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I∕O0	NC
Ν	I/OP2	NC	VDDQ	Vss	DNU ⁽³⁾	NC	VDD ⁽¹⁾	Vss	VDDQ	NC	NC
Р	NC	NC ⁽²⁾	A 5	A2	DNU ⁽³⁾	A1	DNU ⁽³⁾	A11	A14	A15	NC
R	LBO	NC ⁽²⁾	A4	A3	DNU ⁽³⁾	A0	DNU ⁽³⁾	A12	A13	A16	A17

NOTES:

1. H1, H2, and N7 do not have to be directly connected to VDD as long as the input voltage is \geq VIH.

2. B9, B11, A1, R2 and P2 is reserved for future 18M, 36M, 72M, 144M and 288M, respectively.

3. DNU=Do not use. Pins P5, R5, P7 and R7 are reserved for respective JTAG pins: TDI, TMS, TDO and TCK on future revisions. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (Vbp).

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs

Synchronous Truth Table⁽¹⁾

CEN	R/W	Chip ⁽⁵⁾ Enable	ADV/LD	BWx	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	I/O (2 cycles later)
L	L	Select	L	Valid	External	Х	LOAD WRITE	D ⁽⁷⁾
L	Н	Select	L	Х	External	Х	LOAD READ	Q ⁽⁷⁾
L	Х	Х	Н	Valid	Internal	Load Write / Burst Write	BURST WRITE (Advance burst counter) ⁽²⁾	D ⁽⁷⁾
L	Х	Х	Н	Х	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ⁽²⁾	Q ⁽⁷⁾
L	Х	Deselect	L	Х	Х	Х	DESELECT or STOP ⁽³⁾	HiZ
L	Х	Х	Н	Х	Х	DESELECT / NOOP	NOOP	HiZ
Н	Х	Х	Х	Х	Х	Х	SUSPEND ⁽⁴⁾	Previous Value

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. When ADV/LD signal is sampled high, the internal burst counter is incremented. The R/W signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R/W signal when the first address is loaded at the beginning of the burst cycle.

3. Deselect cycle is initiated when either (CE1, or CE2 is sampled high or CE2 is sampled low) and ADV/LD is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.

4. When CEN is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/Os remains unchanged.

5. To select the chip requires $\overline{CE}_1 = L$, $\overline{CE}_2 = L$, $CE_2 = H$ on these chip enables. Chip is deselected if any one of the chip enables is false.

6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes⁽¹⁾

OPERATION	R/W	BW 1	BW 2	BW 3 ⁽³⁾	BW 4 ⁽³⁾
READ	Н	Х	Х	Х	Х
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (I/O[0:7], I/Op1) ⁽²⁾	L	L	Н	Н	Н
WRITE BYTE 2 (I/O[8:15], I/O _{P2}) ⁽²⁾	L	Н	L	Н	Н
WRITE BYTE 3 (I/O[16:23], I/OP3) ^(2,3)	L	Н	Н	L	Н
WRITE BYTE 4 (I/O[24:31], I/OP4) ^(2,3)	L	Н	Н	Н	L
NO WRITE	L	Н	Н	Н	Н

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. Multiple bytes may be selected during the same cycle.

3. N/A for X18 configuration.

Interleaved Burst Sequence Table (**LBO**=VDD)

	Seque	ence 1	Seque	ence 2	Sequ	ence 3	Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	1	0	0	1	0	0

Commercial and Industrial Temperature Ranges

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table (**LBO**=Vss)

	Seque	ence 1	Sequ	ence 2	Sequ	ence 3	Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram⁽¹⁾

CYCLE	n+29	n+30	n+31	n+32	n+33	n+34	n+35	n+36	n+37	
CLOCK										
ADDRESS ⁽²⁾ (A0 - A17)	A29	A30	A31	A32	A33	A34	A35	A36	A37	
CONTROL ⁽²⁾ (R/W, ADV/LD, BWx)	C29	C30	C31	C32	C33	C34	C35	C36	C37	
DATA⁽²⁾ I/O [0:31], I/O P[1:4]	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35	

5304 drw 03

5304 tbl 10

5304 tbl 11

NOTES:

1. This assumes \overline{CEN} , \overline{CE}_1 , CE_2 , \overline{CE}_2 are all true.

2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs Commercial and Industrial Temperature Ranges

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles⁽²⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽¹⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Load read
n+1	Х	Х	Н	Х	L	Х	Х	Х	Burst read
n+2	A 1	Н	L	L	L	Х	L	Qo	Load read
n+3	Х	Х	L	Н	L	Х	L	Q0+1	Deselect or STOP
n+4	Х	Х	Н	Х	L	Х	L	Q1	NOOP
n+5	A2	Н	L	L	L	Х	Х	Z	Load read
n+6	Х	Х	Н	Х	L	Х	Х	Z	Burst read
n+7	Х	Х	L	Н	L	Х	L	Q2	Deselect or STOP
n+8	Аз	L	L	L	L	L	L	Q2+1	Load write
n+9	Х	Х	Н	Х	L	L	Х	Z	Burst write
n+10	A4	L	L	L	L	L	Х	D3	Load write
n+11	Х	Х	L	Н	L	Х	Х	D3+1	Deselect or STOP
n+12	Х	Х	Н	Х	L	Х	Х	D4	NOOP
n+13	A 5	L	L	L	L	L	Х	Z	Load write
n+14	A6	Н	L	L	L	Х	Х	Z	Load read
n+15	A7	L	L	L	L	L	Х	D5	Load write
n+16	Х	Х	Н	Х	L	L	L	Q6	Burst write
n+17	A8	Н	L	L	L	Х	Х	D7	Load read
n+18	Х	Х	Н	Х	L	Х	Х	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$. 2. H = High; L = Low; X = Don't Care; Z = High Impedance.

Read Operation⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	₩x	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Х	L	Х	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	Х	Х	Х	L	Qo	Contents of Address Ao Read Out

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance. 2. \overline{CE} = L is defined as \overline{CE}_1 = L, \overline{CE}_2 = L and CE_2 = H. \overline{CE} = H is defined as \overline{CE}_1 = H, \overline{CE}_2 = H or CE_2 = L.

5304tbl 12

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs

Burst Read Operation⁽¹⁾

Cycle	Address	R/W	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup
n+1	Х	Х	Н	Х	L	Х	Х	Х	Clock Setup Valid, Advance Counter
n+2	Х	Х	Н	Х	L	Х	L	Q0	Address Ao Read Out, Inc. Count
n+3	Х	Х	Н	Х	L	Х	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+4	Х	Х	Н	Х	L	Х	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+5	A 1	Н	L	L	L	Х	L	Q0+3	Address A0+3 Read Out, Load A1
n+6	Х	Х	Н	Х	L	Х	L	Q0	Address Ao Read Out, Inc. Count
n+7	Х	Х	Н	Х	L	Х	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	Н	L	L	L	Х	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance..

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $\overline{CE}_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

Write Operation⁽¹⁾

Cycle	Address	R∕₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Х	L	Х	Х	Х	Clock Setup Valid
n+2	Х	Х	Х	Х	L	Х	Х	Do	Write to Address Ao

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $\overline{CE}_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

Burst Write Operation⁽¹⁾

Cycle	Address	R∕₩	ADV/LD	CE ⁽²⁾	CEN	B₩x	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup
n+1	Х	Х	Н	Х	L	L	Х	Х	Clock Setup Valid, Inc. Count
n+2	Х	Х	Н	Х	L	L	Х	Do	Address Ao Write, Inc. Count
n+3	Х	Х	Н	Х	L	L	Х	D0+1	Address A0+1 Write, Inc. Count
n+4	Х	Х	Н	Х	L	L	Х	D0+2	Address A0+2 Write, Inc. Count
n+5	A 1	L	L	L	L	L	Х	D0+3	Address A0+3 Write, Load A1
n+6	Х	Х	Н	Х	L	L	Х	Do	Address Ao Write, Inc. Count
n+7	Х	Х	Н	Х	L	L	Х	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	Х	D1+1	Address A1+1 Write, Load A2

NOTES:

1. <u>H</u> = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

5304 tbl 15

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs Cou

Commercial and Industrial Temperature Ranges

5304 tbl 17

Read Operation with Clock Enable Used⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O	Comments
n	Ao	Н	L	L	L	Х	Х	Х	Address and Control meet setup
n+1	Х	Х	Х	Х	Н	Х	Х	Х	Clock n+1 Ignored
n+2	A 1	Н	L	L	L	Х	Х	Х	Clock Valid
n+3	Х	Х	Х	Х	Н	Х	L	Qo	Clock Ignored, Data Qois on the bus.
n+4	Х	Х	Х	Х	Н	Х	L	Qo	Clock Ignored, Data Q_0 is on the bus.
n+5	A2	Н	L	L	L	Х	L	Qo	Address Ao Read out (bus trans.)
n+6	Аз	Н	L	L	L	Х	L	Q1	Address A1 Read out (bus trans.)
n+7	A4	Н	L	L	L	Х	L	Q2	Address A2 Read out (bus trans.)

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $\overline{CE}_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	₩x	ŌĒ	I/O	Comments
n	Ao	L	L	L	L	L	Х	Х	Address and Control meet setup.
n+1	Х	Х	Х	Х	Н	Х	Х	Х	Clock n+1 Ignored.
n+2	A 1	L	L	L	L	L	Х	Х	Clock Valid.
n+3	Х	Х	Х	Х	Н	Х	Х	Х	Clock Ignored.
n+4	Х	Х	Х	Х	Н	Х	Х	Х	Clock Ignored.
n+5	A2	L	L	L	L	L	Х	Do	Write Data Do
n+6	Аз	L	L	L	L	L	Х	D1	Write Data D1
n+7	A4	L	L	L	L	L	Х	D2	Write Data D2
									= 5304 tbl 18

Write Operation with Clock Enable Used⁽¹⁾

NOTES:

1. H = High; L = Low; X = Don't Care; Z = High Impedance.

2. \overline{CE} = L is defined as \overline{CE}_1 = L, \overline{CE}_2 = L and CE_2 = H. \overline{CE} = H is defined as \overline{CE}_1 = H, \overline{CE}_2 = H or CE_2 = L.

Read Operation with Chip Enable Used⁽¹⁾

Cycle	Address	R/W	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O ⁽³⁾	Comments
n	Х	Х	L	Н	L	Х	Х	?	Deselected.
n+1	Х	Х	L	Н	L	Х	Х	?	Deselected.
n+2	Ao	Н	L	L	L	Х	Х	Z	Address and Control meet setup
n+3	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+4	A 1	Н	L	L	L	Х	L	Qo	Address Ao Read out. Load A1.
n+5	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+6	Х	Х	L	Н	L	Х	L	Q1	Address A1 Read out. Deselected.
n+7	A2	Н	L	L	L	Х	Х	Z	Address and control meet setup.
n+8	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+9	Х	Х	L	Н	L	Х	L	Q2	Address A2 Read out. Deselected.

Commercial and Industrial Temperature Ranges

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used⁽¹⁾

Cycle	Address	R/₩	ADV/LD	CE ⁽²⁾	CEN	BWx	ŌĒ	I/O ⁽³⁾	Comments
n	Х	Х	L	Н	L	Х	Х	?	Deselected.
n+1	Х	Х	L	Н	L	Х	Х	?	Deselected.
n+2	Ao	L	L	L	L	L	Х	Z	Address and Control meet setup
n+3	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+4	A 1	L	L	L	L	L	Х	Do	Address Do Write in. Load A1.
n+5	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+6	Х	Х	L	Н	L	Х	Х	D1	Address D1 Write in. Deselected.
n+7	A2	L	L	L	L	L	Х	Z	Address and control meet setup.
n+8	Х	Х	L	Н	L	Х	Х	Z	Deselected or STOP.
n+9	Х	Х	L	Н	L	Х	Х	D2	Address D2 Write in. Deselected.

NOTES:

1. H = High; L = Low; X = Don't Care; ? = Don't Know; Z = High Impedance.

2. $\overline{CE} = L$ is defined as $\overline{CE}_1 = L$, $\overline{CE}_2 = L$ and $CE_2 = H$. $\overline{CE} = H$ is defined as $\overline{CE}_1 = H$, $\overline{CE}_2 = H$ or $CE_2 = L$.

5304 tbl 20

Commercial and Industrial Temperature Range

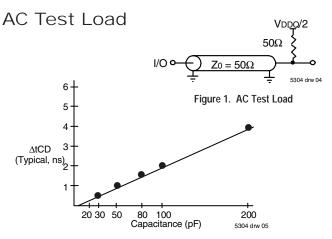
DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V +/-5%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
LI	Input Leakage Current	$V_{\text{DD}} = Max., \ V_{\text{IN}} = 0V \ to \ V_{\text{DD}}$	-	5	μA
ILI	LBO Input Leakage Current ⁽¹⁾	Vdd = Max., Viℕ = 0V to Vdd		30	μA
LO	Output Leakage Current	Vout = 0V to VDDQ, Device Deselected	-	5	μA
VOL	Output Low Voltage	IOL = +8mA, $VDD = Min$.	_	0.4	V
Vон	Output High Voltage	Ioh = -8mA, Vdd = Min.	2.4	_	V
NOTE:	•				5304 tbl 21

NOTE:

1. The LBO pin will be internally pulled to Vbb if it is not actively driven in the application and the ZZ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ ($V_{DD} = 3.3V + /-5\%$)


			150	MHz	133	MHz	100MHz		Unit
Symbol	Parameter	Test Conditions	Com'l	Ind	Com'l	Ind	Com'l	Ind	
ldd	Operating Power Supply Current	$\begin{array}{l} \text{Device Selected, Outputs Open,} \\ \text{ADV}/\overline{\text{LD}} = X, \ \text{V}_{\text{DD}} = \text{Max.,} \\ \text{V}_{\text{IN}} \geq \text{VH} \ \text{or} \leq \text{VIL, } f = \text{fmax}^{(2)} \end{array}$	325	345	300	320	250	270	mA
ISB1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		40	60	40	60	40	60	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, $V_{DD} = Max., V_{N} \ge V_{HD} \text{ or } < V_{LD},$ $f = f_{MAx}^{(2.3)}$		140	110	130	100	120	mA
ISB3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		40	60	40	60	40	60	mA
lzz	Full Sleep Mode Supply Current	$\begin{array}{l} \hline Device \ Selected, \ Outputs \ Open\\ \hline \overline{CEN} \leq V_{IL}, \ V_{DD} = Max., \ ZZ \geq V_{HD}\\ \hline V_{IN} \geq V_{HD} \ or \leq V_{LD}, \ f \ = \ fMax^{(2,3)} \end{array}$	40	60	40	60	40	60	mA

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tcyc; f=0 means no input lines are changing.

3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V.

AC Test Conditions (VDDQ = 3.3V)

Input Pulse Levels	0 to 3V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figure 1

5304 tbl 23

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

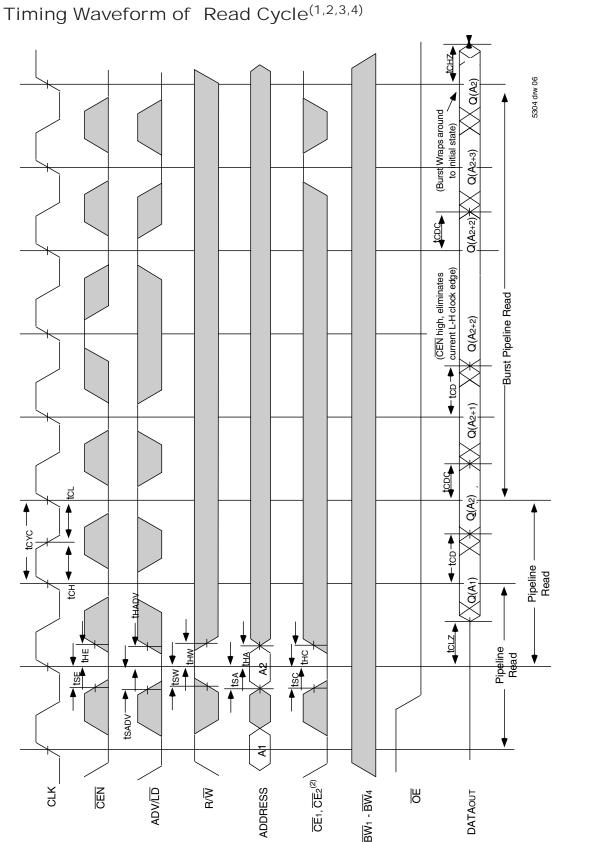
(VDD = 3.3V +/-5%, Commercial and Industrial Temperature Ranges)

		150MHz ⁽⁶⁾			MHz	100MHz		
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
tcyc	Clock Cycle Time	6.7		7.5		10		ns
tF ⁽¹⁾	Clock Frequency		150		133		100	MHz
tсн ⁽²⁾	Clock High Pulse Width	2.0		2.2		3.2		ns
tcl ⁽²⁾	Clock Low Pulse Width	2.0		2.2		3.2		ns
Output Par	ameters	•			•		•	•
tcD	Clock High to Valid Data		3.8.		4.2		5	ns
tCDC	Clock High to Data Change	1.5	_	1.5	—	1.5	—	ns
tcl.z ^(3,4,5)	Clock High to Output Active	1.5	_	1.5	—	1.5		ns
tchz ^(3,4,5)	Clock High to Data High-Z	1.5	3	1.5	3	1.5	3.3	ns
toe	Output Enable Access Time		3.8		4.2		5	ns
tolz ^(3,4)	Output Enable Low to Data Active	0	_	0	-	0	—	ns
tонz ^(3,4)	Output Enable High to Data High-Z		3.8		4.2		5	ns
Set Up Tim	ies						•	
tse	Clock Enable Setup Time	1.5		1.7	—	2.0		ns
tsa	Address Setup Time	1.5		1.7	—	2.0		ns
tsp	Data In Setup Time	1.5		1.7	—	2.0		ns
tsw	Read/Write (R/W) Setup Time	1.5	_	1.7	—	2.0		ns
tsadv	Advance/Load (ADV/LD) Setup Time	1.5	—	1.7	—	2.0	—	ns
tsc	Chip Enable/Select Setup Time	1.5		1.7	—	2.0		ns
tsв	Byte Write Enable (BWx) Setup Time	1.5		1.7		2.0		ns
Hold Times	5							1
the	Clock Enable Hold Time	0.5	—	0.5		0.5		ns
tha	Address Hold Time	0.5	—	0.5	—	0.5		ns
thd	Data In Hold Time	0.5	—	0.5	—	0.5	—	ns
thw	Read/Write (R/W) Hold Time	0.5	—	0.5	—	0.5	—	ns
thadv	Advance/Load (ADV/LD) Hold Time	0.5		0.5		0.5	—	ns
tнc	Chip Enable/Select Hold Time	0.5		0.5		0.5		ns
tнв	Byte Write Enable (BWx) Hold Time	0.5		0.5	—	0.5		ns

5304 tbl 24

NOTES:

1. $t_F = 1/t_{CYC}$.

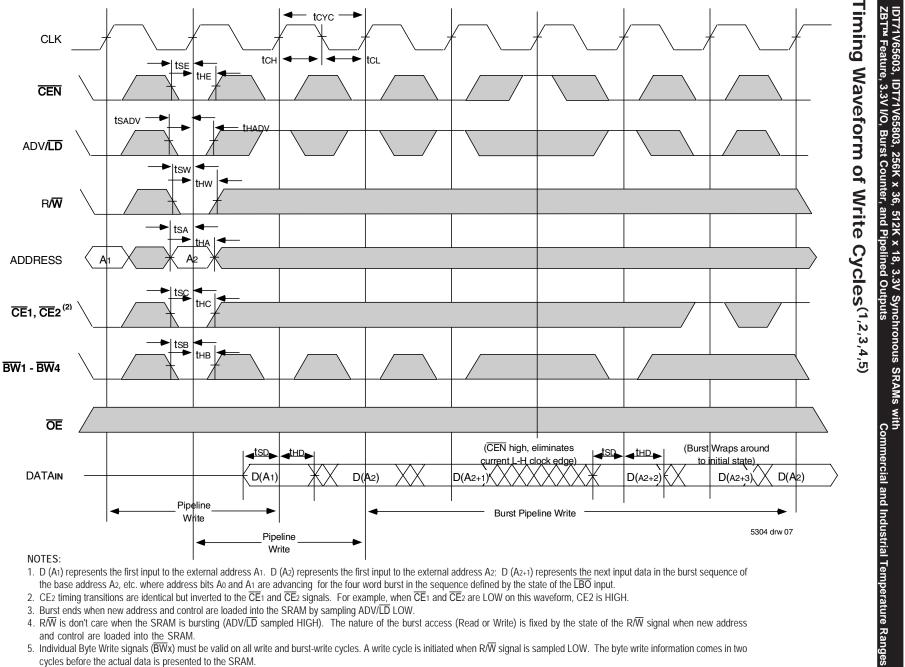

2. Measured as HIGH above 0.6VDDQ and LOW below 0.4VDDQ.

3. Transition is measured $\pm 200 \text{mV}$ from steady-state.

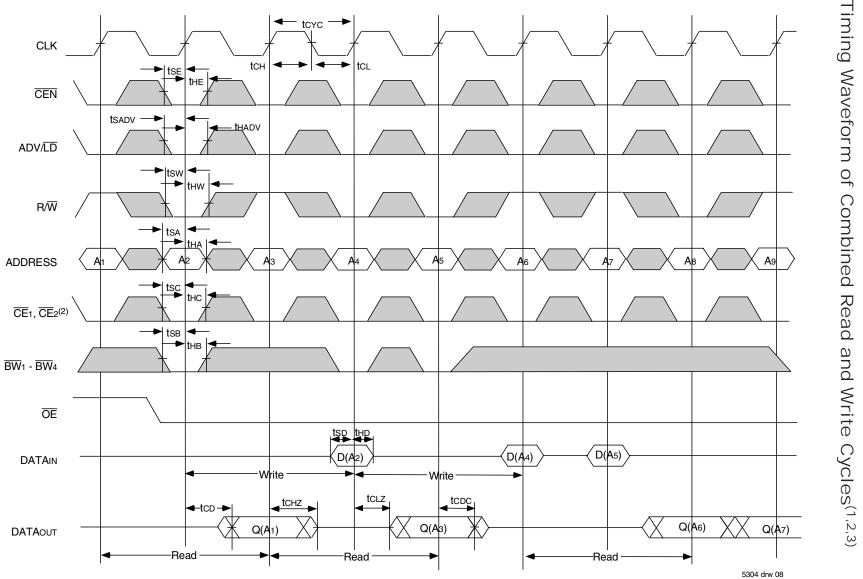
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.

5. To avoid bus contention, the output buffers are designed such that tcHz (device turn-off) is about 1ns faster than tcLz (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tcLz is a Min. parameter that is worse case at totally different test conditions (0 deg. C, 3.465V) than tcHz, which is a Max. parameter (worse case at 70 deg. C, 3.135V).

6. Commercial temperature range only.



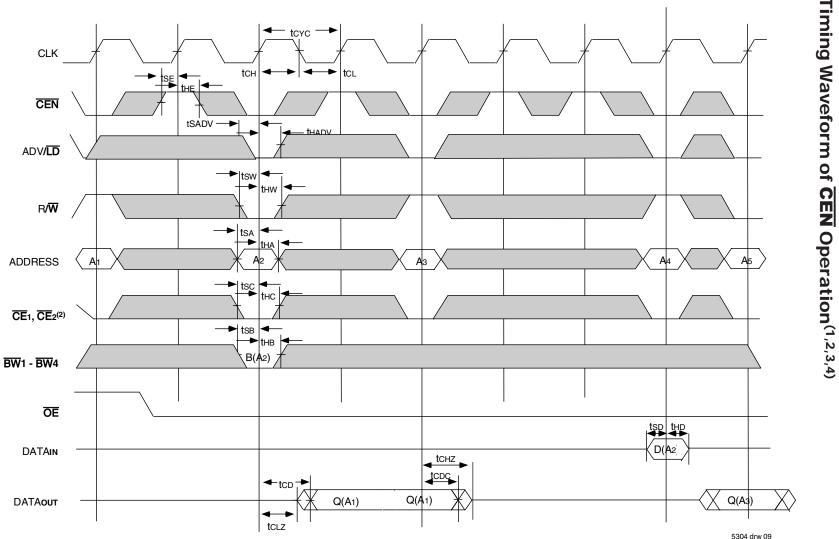
17


NOTES:

1. Q (41) represents the first output from the external address A1. Q (A2) represents the first output from the external address A2; Q (A2+1) represents the next output data in the burst sequence

of the base address A2, etc. where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH. 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW. 4. RWis don't care when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/W signal when new address and control are loaded into the SRAM.

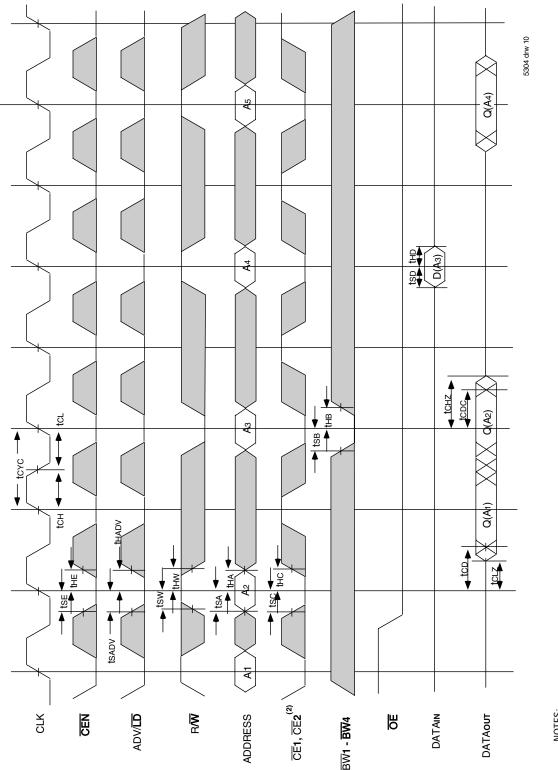
- 1. D (A1) represents the first input to the external address A1. D (A2) represents the first input to the external address A2; D (A2+1) represents the next input data in the burst sequence of the base address A2, etc. where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.
- 2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.
- 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.
- 4. R/W is don't care when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/W signal when new address and control are loaded into the SRAM.
- 5. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when RW signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.


NOTES:

Q (A1) represents the first output from the external address A1. D (A2) represents the input data to the SRAM corresponding to address A2.
CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.

3. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when RIW signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

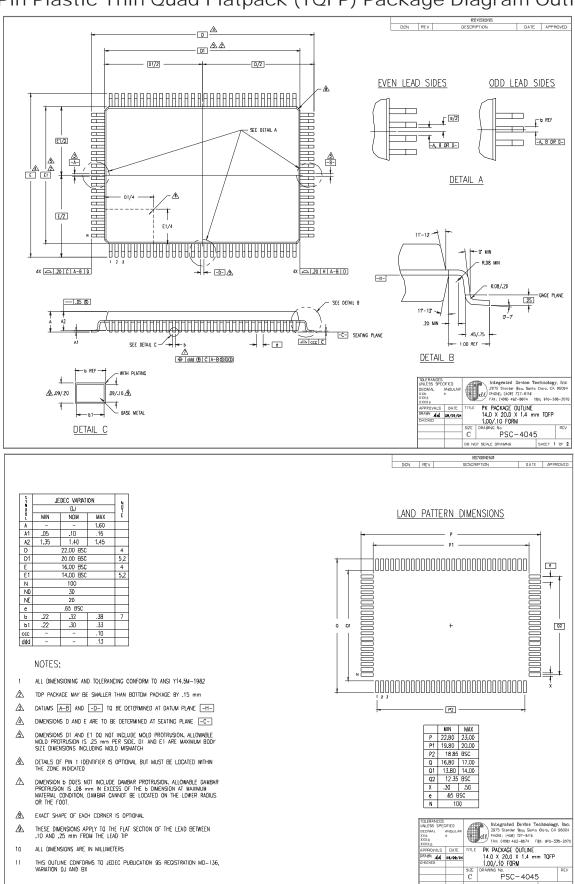
ဖ


IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs Commercial and Industrial Temperature Ranges

IDT71V65603, IDT71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMs with ZBT™ Feature, 3.3V I/O, Burst Counter, and Pipelined Outputs Commercial and Industrial Temperature Ranges

NOTES:

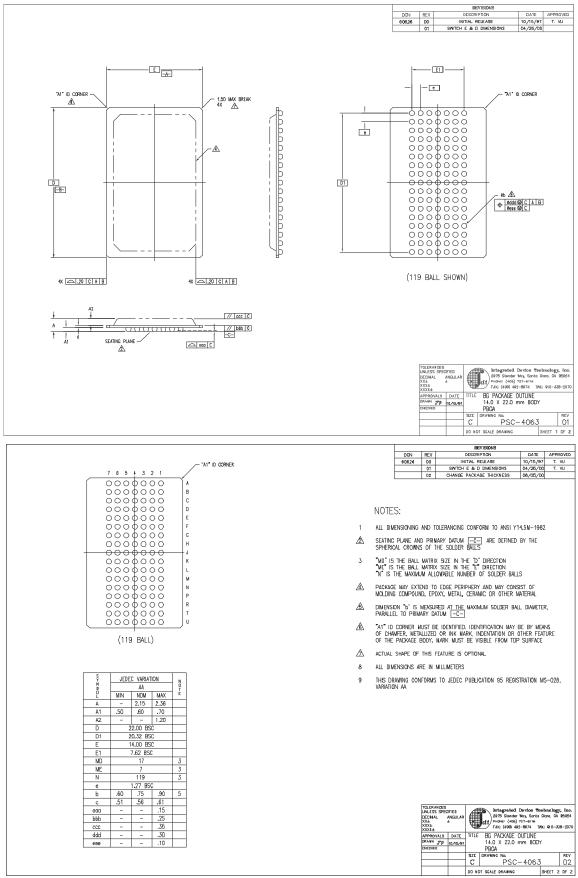
- 1. Q (A1) represents the first output from the external address A1. D (A2) represents the input data to the SRAM corresponding to address A2.
- 2. $\overline{CE_2}$ timing transitions are identical but inverted to the $\overline{CE_1}$ and $\overline{CE_2}$ signals. For example, when $\overline{CE_1}$ and $\overline{CE_2}$ are LOW on this waveform, CE₂ is HIGH.
- 3. CEN when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state.
- Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

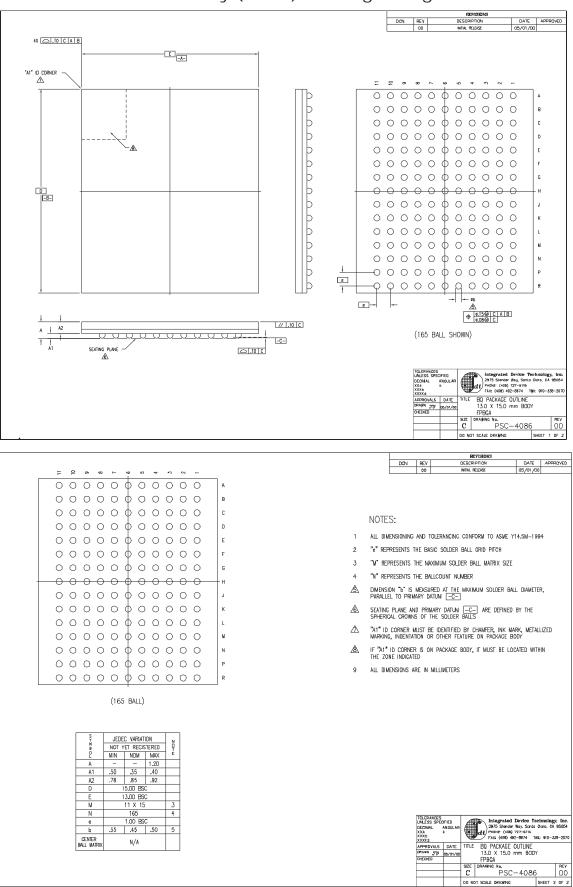

21

1. Q (A1) represents the first output from the external address A1. D (A3) represents the input data to the SRAM corresponding to address A3. 2. CE2 timing transitions are identical but inverted to the RE1 and RE1

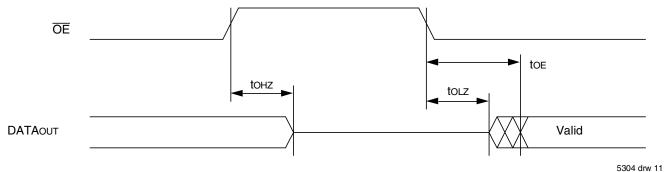
- 2. $\overline{CE2}$ timing transitions are identical but inverted to the $\overline{CE1}$ and $\overline{CE2}$ signals. For example, when $\overline{CE1}$ and $\overline{CE2}$ are LOW on this waveform, $\overline{CE2}$ is HIGH. 3. \overline{CEN} when sampled high on the rising edge of clock that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not
- occur. All internal registers in the SRAM will retain their previous state. 4.
 - Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when RM signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

Timing Waveform of $\overline{\mathbf{CS}}$ Operation^(1,2,3,4)

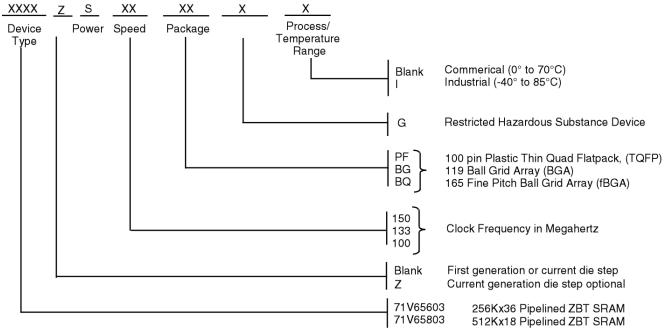

100-Pin Plastic Thin Quad Flatpack (TQFP) Package Diagram Outline


DO NOT SCALE DRAW

SHEET 2 OF 2


119 Ball Grid Array(BGA) Package Diagram Outline

165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline


Timing Waveform of $\overline{\mathbf{OE}}$ Operation⁽¹⁾

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

5304 drw 12

Datasheet Document History

12/31/99		Created new datasheet from obsolete devices IDT71V656 and IDT71V658
03/04/00	Pg. 1,14,15	Removed 166MHz speed grade offering; Added 150MHz speed grade offering
04/20/00	Pg. 5,6	Added JTAG test pins to TQFP pin configuration; removed footnote
	Pg. 5,6	Add clarification note to Recommended Operating temperature and Absolute Max Ratings tables
	Pg. 7	Add note to BGA pin Configuration; correct typo within pinout
	Pg. 21	Insert TQFP Package Diagram Outline
05/23/00	C C	Add new package offering, 13 x 15mm 165 fBGA
	Pg. 23	Correction in BG 119 Package Diagram Outline
07/28/00	0	Add industrial temperature
	Pg. 2	Correction VDDQ 3.3V I/O supply
	Pg. 5-8	Remove JTAG offerings, refer to IDT71V656xx and IDT71V658xx device errata sheet
	Pg. 7	Correct pin B2
	Pg. 8	Change pin B1 to NC
	Pg. 23	Update BG119 Package Diagram Outline
11/04/00	Pg. 8	Add note to pin N5 on BQ165 pinout, reserved for JTAG TRST
	Pg. 15	Add Izz parameter to DC Electrical Characteristics
10/16/01	Pg. 16	Changed sub-header to include Commercial and Industrial Temperature Ranges. Corrected the TCH
		from 22ns to 2.2ns and TSADV from 20ns to 2.0ns.
12/04/02	Pg. 1-25	Changed datasheet from Prelininary to final release.
	Pg. 15	Added I temp to 150MHz.
	Pg. 16	Corrected typo from 22 to 2.2.
12/19/02	Pg. 1,2,5,6,	Removed JTAG functionality for current die revision.
	7,8	
	Pg. 7	Corrected pin configuration on the x36, 119BGA. Switched pins I/O0 and I/OP1.
09/30/04	Pg. 5,6	Updated temperature TA note.
	Pg. 7	Updated pin configuration for the 119BGA-reordered I/O signals on P7,N6,L6, K7,H6, G7, F6, E7, D6
		(512K x18).
	Pg. 25	Added "restricted hazardous substance device" to ordering information.
02/21/07	Pg. 25	Added Z generation die step to data sheet ordering information.
10/16/08	Pg. 25	Updated the ordering information by removing the "IDT" notation.

CORPORATE HEADQUARTERS

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: sramhelp@idt.com 408-284-4532

The IDT logo is a registered trademark of Integrated Device Technology, Inc.