LT5570

feATURES

- Frequency Range: 40MHz to 2.7 GHz
- Accurate RMS Power Measurement of High Crest Factor Modulated Waveforms
- Linear DC Output vs Input Power in dBm
- Linear Dynamic Range: Up to 60dB
- Exceptional Accuracy over Temperature: $\pm 0.3 \mathrm{~dB}$
- Fast Response Time: $0.5 \mu \mathrm{~s}$ Rise Time, $8 \mu \mathrm{~s}$ Fall Time
- Low Supply Current: 26.5 mA
- Low Impedance Output Buffer Capable of Driving High Capacitance Load
- Small $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 10-Lead DFN Package

APPLICATIONS

- RMS Power Measurement
- RF Power Control
- Receive and Transmit Gain Control
- W-CDMA, CDMA2000, TD-SCDMA, WiMAX
- RF Instrumentation

DESCRIPTIOn

The LT®5570 is a 40MHzto 2.7GHz monolithic Logarithmic Mean-Squared RF power detector. It is capable of RMS measurement of an AC signal with wide dynamic range, from -52 dBm to 13 dBm depending on frequency. The power of the AC signal in an equivalent decibel-scaled value is precisely converted into DC voltage on a linear scale, independent of the crestfactor of the waveforms. The LT5570 is suitable for precision RF power measurementand level control for a wide variety of RF standards, including CDMA, W-CDMA, CDMA2000, TD-SCDMA and WiMAX. The DC output is buffered with a low output impedance amplifier capable of driving a high capacitance load.
$\mathbf{\wedge}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
Protected by U.S. Patents including 7262661, 7259620, 7268608.

TYPICAL APPLICATION

40MHz to 2.7GHz Mean-Squared Power Detector

Output Voltage, Linearity Error vs Input Power, $25^{\circ} \mathrm{C}$ (2140 MHz)

ABSOLUTE MAXIMUM RATIOGS
 (Note 1)
 Supply Voltage ..5.5V
 Enable Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
 Input Signal Power (Differential)..........................15dBm
 TJMAX .. $125^{\circ} \mathrm{C}$
 Operating Temperature Range.................. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
 Storage Temperature Range................... $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: This part is sensitive to electrostatic discharge. It is very important that proper ESD precautions be observed when handling the LT5570.

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT5570IDD\#PBF	LT5570IDD\#TRPBF	LCJQ	$10-$ Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=5 \mathrm{~V}$, unless otherwise noted. Test circuits are shown in Figures 1 and 3. (Notes 2 and 3).

PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
AC Input						
Input Frequency Range (Note 4)		\bullet		40 to 2700		MHz
Input Impedance				200/1		Ω / pF
$\mathrm{f}_{\mathrm{RF}}=500 \mathrm{MHz}$						
RF Input Power Range	CW Input; 1:4 Balun Matched into 50Ω Source			-52 to 13		dBm
Linear Dynamic Range (Note 5)	$\pm 1 \mathrm{~dB}$ Linearity Error, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			62		dB
Output Slope				36.9		$\mathrm{mV} / \mathrm{dB}$
Logarithmic Intercept				-54.8		dBm
Output Variation vs Temperature	Normalized to Output at $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{IN}}=-50 \mathrm{dBm} \text { to } 13 \mathrm{dBm}$			± 0.5		dB
Deviation from CW Response	11dB Peak to Average Ratio (3-Carrier CDMA2K) 12dB Peak to Average Ratio (4-Carrier WCDMA)			$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$		dB dB
$2^{\text {nd }}$ Order Harmonic Distortion	At RF Input; CW Input; $\mathrm{P}_{\text {IN }}=10 \mathrm{dBm}$			61		dBc
$3{ }^{\text {rd }}$ Order Harmonic Distortion	At RF Input; CW Input; $\mathrm{P}_{\text {IN }}=10 \mathrm{dBm}$			66		dBc

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=5 \mathrm{~V}$, unless otherwise noted. Test circuits are shown in Figures 1 and 3. (Notes 2 and 3).

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{f}_{\mathrm{RF}}=880 \mathrm{MHz}$					
RF Input Power Range	CW Input; 1:4 Balun Matched into 50Ω Source		-48 to 13		dBm
Linear Dynamic Range (Note 5)	$\pm 1 \mathrm{~dB}$ Linearity Error, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		61		dB
Output Slope			37.7		$\mathrm{mV} / \mathrm{dB}$
Logarithmic Intercept			-51.9		dBm
Output Variation vs Temperature	Normalized to Output at $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{IN}}=-47 \mathrm{dBm} \text { to } 13 \mathrm{dBm}$		± 0.4		dB
Deviation from CW Response	11dB Peak to Average Ratio (3-Carrier CDMA2K) 12dB Peak to Average Ratio (4-Carrier WCDMA)		$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$		dB
$2{ }^{\text {nd }}$ Order Harmonic Distortion	At RF Input; CW Input; $\mathrm{P}_{\text {IN }}=10 \mathrm{dBm}$		60		dBC
$3{ }^{\text {rd }}$ Order Harmonic Distortion	At RF Input; CW Input; $\mathrm{P}_{\text {IN }}=10 \mathrm{dBm}$		61		dBC
$\mathrm{f}_{\mathrm{RF}}=2140 \mathrm{MHz}$					
RF Input Power Range	CW Input; 1:4 Balun Matched into 50Ω Source		-38 to 13		dBm
Linear Dynamic Range (Note 5)	$\pm 1 \mathrm{~dB}$ Linearity Error, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	47	51		dB
Output Slope		34.8	36.5	39.0	$\mathrm{mV} / \mathrm{dB}$
Logarithmic Intercept		-43.6	-40.6	-37.6	dBm
Output Variation vs Temperature	Normalized to Output at $25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$; $\mathrm{P}_{\text {IN }}=-36 \mathrm{dBm}$ to 13 dBm		± 0.3		dB
Deviation from CW Response	11dB Peak to Average Ratio (3-Carrier CDMA2K) 12dB Peak to Average Ratio (4-Carrier WCDMA)		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		dB dB

$\mathrm{f}_{\mathrm{RF}}=2700 \mathrm{MHz}$

| RF Input Power Range | CW Input; $1: 4$ Balun Matched into 50Ω Source | -35 to 13 | dBm |
| :--- | :--- | :---: | :---: | :---: |
| Linear Dynamic Range (Note 5) | $\pm 1 \mathrm{~dB}$ Linearity Error, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | 48 | dB |
| Output Slope | | 36.4 | $\mathrm{mV} / \mathrm{dB}$ |
| Logarithmic Intercept | | -38.5 | dBm |
| Output Variation vs Temperature | Normalized to Output at $25^{\circ} \mathrm{C}$
 $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{IIN}}=-31 \mathrm{dBm}$ to 13dBm | ± 0.2 | dB |
| Deviation from CW Response | 11 dB Peak to Averae Ratio (3-Carrier CDMA2K)
 12 dB Peak to Average Ratio (4-Carrier WCDMA) | 0.1 | |

Output

Output DC Voltage	No RF Signal Present	0.1	V
Output Impedance		100	Ω
Sourcing/Sinking		5/2.5	mA
Rise Time	0.2 V to $1.6 \mathrm{~V}, 10 \%$ to $90 \%, \mathrm{C} 1=22 \mathrm{nF}, \mathrm{f}_{\mathrm{RF}}=2140 \mathrm{MHz}$	0.5	$\mu \mathrm{S}$
Fall Time	1.6 V to $0.2 \mathrm{~V}, 90 \%$ to $10 \%, \mathrm{C} 1=22 \mathrm{nF}, \mathrm{f}_{\mathrm{RF}}=2140 \mathrm{MHz}$	8	$\mu \mathrm{S}$

ELECTRICAL CHARACTERISTICS The • denotes the specilications which apply voer the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=5 \mathrm{~V}$, unless otherwise noted. Test circuits are shown in Figures 1 and 3. (Notes 2 and 3).| PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enable (EN) Low = Off, High = On | | | | | | |
| EN Input High Voltage (On) | | \bullet | 2 | | | V |
| EN Input Low Voltage (Off) | | \bullet | | | 1 | V |
| Enable Pin Input Current | $\mathrm{EN}=5 \mathrm{~V}$ | \bullet | | 68 | | $\mu \mathrm{A}$ |
| Turn ON Time | $\mathrm{V}_{\text {OUT }}$ within 10\% of Final Value, $\mathrm{C} 1=22 \mathrm{nF}$ | | | 1 | | $\mu \mathrm{s}$ |
| Turn OFF Time | $\mathrm{V}_{\text {OUT }}<0.1 \mathrm{~V}, \mathrm{C} 1=22 \mathrm{nF}$ | | | 5 | | $\mu \mathrm{s}$ |
| Power Supply | | | | | | |
| Supply Voltage | | - | 4.75 | 5 | 5.25 | V |
| Supply Current | | | | 26.5 | 32.5 | mA |
| Shutdown Current | $\mathrm{EN}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ | | | 0.1 | 100 | $\mu \mathrm{A}$ |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Specifications over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: A 1:4 input transformer is used for the input matching to 50Ω source.
Note 4: Operation over a wider frequency range is possible with reduced performance. Consult the factory for information and assistance.
Note 5: The linearity error is calculated by the difference between the incremental slope of the output and the average output slope from -30 dBm to 2 dBm . The dynamic range is defined as the range over which the linearity error is within $\pm 1 \mathrm{~dB}$.

Output Voltage, Linearity Error vs RF Input Power, 500MHz

Output Voltage, Linearity Error vs RF Input Power, 880MHz

Linearity Error vs RF Input Power, 500 MHz Modulated Waveforms

Linearity Error vs RF Input Power, 880MHz Modulated Waveforms

Output Voltage, Linearity Error vs RF Input Power, 2700MHz

5570 G11

Linearity Error vs RF Input Power, 2140MHz Modulated Waveforms

5570 G08
Linearity Error vs RF Input Power, 2700MHz Modulated Waveforms

TYPICAL PGRFORMANCE CHARACTERISTICS (Test Circuits Shown in Figures 1 and 3)

PIn fUnCTIONS

$V_{\text {CC }}$ (Pin 1): Power Supply Pin for the Bias Circuits. Typical current consumption is 26.5 mA . This pin should be externally bypassed with 1 nF and $1 \mu \mathrm{~F}$ chip capacitors.
IN ${ }^{+}$, IN (Pins 2, 4): Differential Input Signal Pins. These pins are preferably driven with a differential signal for optimum performance. The pins are internally biased to $V_{C C}-1.224 \mathrm{~V}$ and should be DC blocked externally. The differential impedance is about 200Ω.

DEC (Pin 3): Input Common Mode Decoupling Pin. This pin is internally biased to $\mathrm{V}_{C C}-1.224 \mathrm{~V}$. The input impedance is about $1.75 \mathrm{~K} \Omega$ in parallel with a 10 pF internal shunt capacitor to ground. The impedance between DEC and $\mathrm{IN}{ }^{+}\left(\right.$or $\left.\mathrm{IN}^{-}\right)$is about 100Ω. The pin can be connected to the center tap of an external balun. An ac-decoupling capacitor may be connected to ground to maintain the IC performance if necessary.
GND (Pin 5, Exposed Pad): Circuit Ground Return for the Entire IC. This must be soldered to the printed circuit board ground plane.

OUT (Pin 6): DC Output Pin. The output impedance is mainly determined by an internal 100Ω series resistance that provides output circuit protection if the output is shorted to ground.

DNC (Pins 7, 8): Do Not Connect. Don't connect any external component at these pins. Avoid a long wire or metal trace on the PCB.

EN (Pin 9): Enable Pin. An applied voltage above 2 V will activate the bias for the IC. For an applied voltage below 1 V , the circuits will be shut down (disabled) with a corresponding reduction in power supply current. If the enable function is not required, then this pin should be connected to $\mathrm{V}_{\text {Cc }}$. Typical enable pin input current is $68 \mu \mathrm{~A}$ for $\mathrm{EN}=5 \mathrm{~V}$. Note that at no time should the Enable pin voltage be allowed to exceed $\mathrm{V}_{C C}$ by more than 0.3 V .
FLTR (Pin 10): Connection for an External Filtering Capacitor C1. A minimum 22nF capacitor is required for stable ac average power measurement. This capacitor should be connected between Pin 10 and V_{CC}.

TEST CIRCUITS

REF DES	VALUE	SIZE	PART NUMBER
C2, C4	1 nF	0402	AVX 0402ZC102KAT
C1	22 nF	0402	AVX 0402YC223KAT
C3	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA
R1	100 k	0402	CRCW0402100KFKED

FREQUENCY	T1	L1	L1 P/N	C7	
880 MHz	MURATA LDB21869M20C-001	8.2 nH	TOKO LL1005-FH8N25	2.7 pF	MURATA GRM1555C1H2R7DZ01
2140 MHz	MURATA LDB212G1020-001	3.3 nH	TOK0 LL1005-FH3N35	0.5 pF	MURATA GRM1555C1HR50CZ01
2700 MHz	MURATA LDB212G4020-001	1.2 nH	TOK0 LL1005-FH1N25	1 pF	MURATA GRM1555C1H1R0DZ01

Figure 1. Test Schematic for $880 \mathrm{MHz}, 2140 \mathrm{MHz}$ and 2700 MHz Applications

Figure 2. Top Side of Evaluation Board for $\mathbf{8 8 0 M H z}, \mathbf{2 1 4 0 M H z}$ and 2700 MHz Applications

TEST CIRCUITS

REF DES	VALUE	SIZE	PART NUMBER
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 7$	1 nF	0402	AVX 0402ZCIO2KAT
C 1	22 nF	0402	AVX 0402YC223KAT
C 3	$1 \mu \mathrm{~F}$	0603	Taiyo Yuden LMK107BJ105MA

REF DES	VALUE	SIZE	PART NUMBER
R1	100 k	0402	CRCW0402100KFKED
T2	$1: 4$		ETC4-1-2
C8	OPT	0402	
C9, L1	0	0402	CJ05-000M

Figure 3. Test Schematic for 40MHz to 860MHz Applications

Figure 4. Top Side of Evaluation Board for 40MHz to 860 MHz Applications

APPLICATIONS INFORMATION

The LT5570 is a mean-squared RF power detector, capable of measuring an RF signal over the frequency range from 40 MHz to 2.7 GHz , independent of input waveforms with different crest factors such as CW, CDMA, WCDMA, TDSCDMA and WiMAX signals. A wide dynamic range is achieved with very stable output within the full temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

RF Inputs

The differential RF inputs are internally biased at $V_{C C}-1.224 \mathrm{~V}$. The differential impedance is about 200Ω. These pins should be DC blocked when connected to ground or other matching components. The impedance vs. frequency of the differential RF input is detailed in the following table.

Table 1. RF Differential Input Impedance

FREQUENCY (MHz)	DIFFERENTIAL INPUT IMPEDANCE (Ω)	S11	
		ANGLE (${ }^{\circ}$)	
40	$204-\mathrm{j} 0.6$	0.606	-0.1
100	$204-\mathrm{j} 1.8$	0.606	-0.3
200	$204-\mathrm{j} 3.6$	0.606	-0.5
400	$203.5-\mathrm{j} 7.3$	0.606	-1.1
600	$202.8-\mathrm{j} 10.9$	0.605	-1.6
800	$201.8-\mathrm{j} 14.5$	0.604	-2.1
1000	$200.6-\mathrm{j} 17.9$	0.603	-2.7
1200	$199.1-\mathrm{j} 21.3$	0.602	-3.2
1400	$197.3-\mathrm{j} 24.7$	0.601	-3.8
1600	$195.4-\mathrm{j} 27.9$	0.599	-4.4
1800	$193.2-\mathrm{j} 31.1$	0.598	-5.0
2000	$190.8-\mathrm{j} 34.2$	0.596	-5.6
2200	$188.2-\mathrm{j} 37.4$	0.593	-6.2
2400	$185.3-\mathrm{j} 40.4$	0.591	-6.9
2600	$181.9-\mathrm{j} 43.5$	0.589	-7.6
2800	$178.3-\mathrm{j} 46.4$	0.586	-8.4
3000	$174.4-\mathrm{j} 49.3$	0.582	-9.2

The LT5570's differential inputs are optimally driven from a fully balanced source. When the signal is from a singleended 50Ω source, conversion to a differential signal is required to achieve the maximum dynamic range. This is best achieved using a 1:4 balun to match the internal 200Ω input impedance as shown in Figures 1 and 3. This impedance transformation results in 6dB voltage gain. At high frequency, additional LC elements may be needed for input impedance matching due to the parasitics of the transformer and PCB trace.
The approximate RF input power range of the LT5570 is 60 dB at frequencies up to 900 MHz , even with high crest factor signals such as a 4-carrier W-CDMA waveform. However the minimum detectable RF power level degrades as the input RF frequency increases.
Due to the high RF input impedance of the LT5570, a narrow band L-C matching network can be used for the conversion of a single-ended to balanced signal as well. By this means, the sensitivity and overall linear dynamic range of the detector remain the same, without using an RF balun.

The LT5570 can also be driven in a single-ended configuration. Figure 5 shows the simplified circuit of this single-ended configuration. The DEC Pin is preferably accoupled to ground via a capacitor rather than left floating.

Figure 5. Single-Ended Input Configuration

APPLICATIONS INFORMATION

5570 F06
Figure 6. Output Voltage and Linearity Error vs RF Input Power in Single-ended Input Configuration

The DEC pin can be tied to the IN^{+}(or IN^{-}) Pin directly and ac-coupled to ground while the RF signal is applied to the IN^{-}(or IN^{+}) Pin. By simply terminating the signal side of the inputs with a 100Ω resistor to ground in front of the ac-blocking capacitor and coupling the other side to ground using a 1 nF capacitor, a broadband 50Ω input match can be achieved with typical input return loss better than 12 dB from 40 MHz to 2.7 GHz .

Since there is no voltage conversion gain from impedance transformation in this case, the sensitivity of the detector is reduced by 6 dB . The linear dynamic range is reduced by the same amount correspondingly as shown in Figure 6.

External Filtering (FLTR) Capacitor C1

This pin is internally biased at $\mathrm{V}_{\text {CC }}-0.13 \mathrm{~V}$ via a 2 k resistor from voltage supply $\mathrm{V}_{\text {Cc }}$. To assure stable operation of the LT5570, an external capacitor C1 with a value of 22 nF or higher is required to connect the FLTR Pin to V_{CC}. Don't connect this filtering capacitor to ground or any other low voltage reference at any time to avoid an abnormal start-up condition.

Figure 7. Residual Ripple, Output Transient Times vs. Filtering Capacitor C1

C1's value has a dominant effect on the output transient response. The lower the capacitance, the faster the output rise and fall times as illustrated in Figure 7. For signals with AM content such as W-CDMA, ripple can be observed when the loop bandwidth set by C 1 is close to the modulation bandwidth of the signal. A 4-carrier W-CDMA RF signal is used as an example in this case. The trade-offs of residual ripple vs. output transient time are also as shown in Figure 7.

In general, the LT5570 output ripple remains relatively constant regardless of the RF input power level for a fixed C1 and modulation format of the RF signal. Typically, C1 must be selected to average out the ripple to achieve the desired accuracy of RFpowermeasurement. For atwo-tone RF signal with equal power applied to the LT5570 input, Figure 8 shows the variation of the output dc voltage and its RMS value of the residual ac voltage as a function of the delta frequency. Both values are referred to dB by normalizing them to the output slope (about $37 \mathrm{mV} / \mathrm{dB}$). In this measurement, $\mathrm{C} 1=22 \mathrm{nF}$. Increasing C 1 will shift both curves toward a lower frequency.

APPLICATIONS INFORMATION

Figure 8. Output DC Voltage Variation and Residual Ripple vs AM Modulation Frequency

The high performance RF circuits inside the LT5570 enable it to handle output ripple as high as 2 dB without losing its power detection accuracy. The ripple can be further reduced for optimal transient time with an additional RC lowpass filter at the output as discussed in the next section.

Output Interface

The output buffer amplifier of the LT5570 is shown in Figure 9. This push-pull buffer amplifier can source 5mA current to the load and sink 2.5 mA current from the load. The output impedance is determined primarily by the 100Ω series resistor connected to the buffer amplifier. This will prevent any over-stress on the internal devices in case the output is shorted to ground.
The -3 dB bandwidth of the buffer amplifier is about 2.4 MHz and the full-scale rise/fall time can be as fast as

Figure 9. Simplified Circuit Schematic of the Output Interface

175 ns . When the output is resistively terminated or open, the fastest output transient response is achieved when a large signal is applied to the RF input port. The total rise time of the LT5570 is about $0.5 \mu \mathrm{~s}$ and the total fall time is $8 \mu \mathrm{~s}$, respectively, for full-scale pulsed RF input power. The speed of the output transient response is dictated mainly by the filtering capacitor C 1 (at least 22 nF) at the FLTR pin. See the detailed output transient response in the Typical Performance Characteristics section. When the RF input has AM content, residual ripple may be present at the output depending upon the low frequency content of the modulated RF signal. For example, when 4-carrier WCDMA is applied at the RF input, $\pm 36 \mathrm{mV}_{\text {RMS }}$ (about $\pm 1 \mathrm{~dB}$) ripple is present at the output. This ripple can be reduced with a larger filtering capacitor C 1 at the expense of a slower transient response.

APPLICATIONS INFORMATION

5570 F10
Figure 10. Residual ripple, Output Transient Times with Output Low-pass Filter

Since the output amplifier of the LT5570 is capable of driving an arbitrary capacitive load, the residual ripple can be filtered at the output with a series resistor R_{SS} and a large shunt capacitor ClOAD. See Figure 9. This lowpass filter also reduces the output noise by limiting the output noise bandwidth. When this RC network is designed properly, a fast output transient response can be maintained with reduced residual ripple. We can estimate $\mathrm{C}_{\text {LOAD }}$ with an output voltage swing of 1.8 V at 2140 MHz . In order that the maximum 2.5 mA sinking current not limit the fall time (about $8 \mu \mathrm{~S}$), $\mathrm{C}_{\text {LOAD }}$ can be chosen as follows.

$$
\begin{aligned}
& \mathrm{C}_{\text {LOAD }}=2.5 \mathrm{~mA} \bullet \text { approximate additional time } / 1.8 \mathrm{~V} \\
& =2.5 \mathrm{~mA} \bullet 0.25 \mu \mathrm{~s} / 1.8 \mathrm{~V}=347 \mathrm{pF}
\end{aligned}
$$

Once $C_{\text {LOAD }}$ is determined, $\mathrm{R}_{S S}$ can be chosen properly to form a RC lowpass filter with a corner frequency of $2 \pi /\left(R_{S S} \bullet C_{\text {LOAD }}\right)$. Using 4-carrierW-CDMA as an example, Figure 10 shows the residual ripple is reduced to half from 36 mV RMS with $R_{S S}=4.7 \mathrm{k}$ and $C_{\text {LOAD }}=330 \mathrm{pF}$, while the fall time is slightly increased to $8.8 \mu \mathrm{~S}$.

Figure 11. Enable Pin Simplified Circuit

In general, the rise time of the LT5570 is much shorter than the fall time. However, when the output RC filter is used, the rise time is dominated by the time constant of this filter. Accordingly, the rise time becomes very similar to the fall time.

Enable Interface

A simplified schematic of the EN Pin interface is shown in Figure 11. The enable voltage necessary to turn on the LT5570 is 2 V . To disable or turn off the chip, this voltage should be below 1 V . It is important that the voltage applied to the EN pin should never exceed V_{Cc} by more than 0.3 V . Otherwise, the supply current may be sourced through the upper ESD protection diode connected at the EN pin. Under no circumstances should voltage be applied to the EN Pin before the supply voltage is applied to the $V_{C C}$ pin. If this occurs, damage to the IC may result.

PACKAGE DESCRIPTION

DD Package

10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699)

BOTTOM VIEW—EXPOSED PAD

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2).

CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT5514	Ultralow Distortion, IF Amplifier/ADC Driver with Digitally Controlled Gain	850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range
LT5515	1.5 GHz to 2.5 GHz Direct Conversion Quadrature Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8 GHz to 1.5 GHz Direct Conversion Quadrature Demodulator	21.5dBm IIP3, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5518	1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator	22.8 dBm OIP3 at 2GHz, $-158.2 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, 50Ω Single-Ended RF and LO Ports, 4-Channel W-CDMA ACPR $=-64 \mathrm{dBc}$ at 2.14 GHz
LT5519	0.7 GHz to 1.4 GHz High Linearity Upconverting Mixer	17.1 dBm IIP3 at 1 GHz , Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5520	1.3GHz to 2.3GHz High Linearity Upconverting Mixer	15.9 dBm IIP3 at 1.9 GHz , Integrated RF Output Transformer with 50Ω Matching, Single-Ended LO and RF Ports Operation
LT5521	10MHz to 3700 MHz High Linearity Upconverting Mixer	24.2dBm IIP3 at 1.95GHz, NF $=12.5 \mathrm{~dB}, 3.15 \mathrm{~V}$ to 5.25V Supply, Single-Ended LO Port Operation
LT5522	600MHz to 2.7GHz High Signal Level Downconverting Mixer	4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF $=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports
LT5524	Low Power, Low Distortion ADC Driver with Digitally Programmable Gain	450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control
LT5525	High Linearity, Low Power Downconverting Mixer	Single-Ended 50Ω RF and LO Ports, 17.6 dBm IIP3 at 1900 MHz , $\mathrm{I}_{\text {CC }}=28 \mathrm{~mA}$
LT5526	High Linearity, Low Power Downconverting Mixer	3 V to 5.3 V Supply, 16.5 dBm IIP3, 100 kHz to 2 GHz RF, $\mathrm{NF}=11 \mathrm{~dB}, \mathrm{I}_{\mathrm{CC}}=28 \mathrm{~mA}$, -65dBm LO-RF Leakage
LT5527	400MHz to 3.7GHz High Signal Level Downconverting Mixer	IIP3 $=23.5 \mathrm{dBm}$ and $\mathrm{NF}=12.5 \mathrm{dBm}$ at 1900 MHz , 4.5 V to 5.25 V Supply, $\mathrm{I}_{\mathrm{CC}}=78 \mathrm{~mA}$, Conversion Gain $=2 \mathrm{~dB}$
LT5528	1.5 GHz to 2.4 GHz High Linearity Direct Quadrature Modulator	21.8 dBm OIP3 at $2 \mathrm{GHz},-159.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, 4-Channel W-CDMA ACPR $=-66 \mathrm{dBc}$ at 2.14 GHz
LT5557	400MHz to 3.8 GHz , 3.3V High Signal Level Downconverting Mixer	IIP3 $=23.7 \mathrm{dBm}$ at $2600 \mathrm{MHz}, 23.5 \mathrm{dBm}$ at 3600 MHz , $\mathrm{I} \mathrm{CC}=82 \mathrm{~mA}$ at 3.3 V
LT5560	Ultra-Low Power Active Mixer	10 mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.
LT5568	700MHz to 1050MHz High Linearity Direct Quadrature Modulator	22.9 dBm OIP3 at $850 \mathrm{MHz},-160.3 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, $50 \Omega, 0.5 \mathrm{~V}_{\mathrm{DC}}$ Baseband Interface, 3-Ch CDMA2000 ACPR $=-71.4 \mathrm{dBc}$ at 850 MHz
LT5572	1.5 GHz to 2.5 GHz High Linearity Direct Quadrature Modulator	21.6 dBm OIP3 at $2 \mathrm{GHz},-158.6 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor, High-Ohmic $0.5 \mathrm{~V}_{\text {DC }}$ Baseband Interface, $4-\mathrm{Ch}$ W-CDMA ACPR $=-67.7 \mathrm{dBc}$ at 2.14 GHz
LT5575	800MHz to 2.7GHz High Linearity Direct Conversion I/Q Demodulator	50Ω, Single-Ended RF and LO Inputs. 28dBm IIP3 at 900MHz, 13.2dBm P1dB, 0.04 dB I/Q Gain Mismatch, 0.4° I/Q Phase Mismatch
RF Power Detectors		
LTC®505	RF Power Detectors with >40dB Dynamic Range	300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100kHz to 1000MHz RF Power Detector	100 kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300MHz to 7GHz RF Power Detector	44dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5509	300 MHz to 3GHz RF Power Detector	36dB Dynamic Range, Low Power Consumption, SC70 Package
LTC5530	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {OUT }}$ Offset Control, Shutdown, Adjustable Gain
LTC5531	300MHz to 7GHz Precision RF Power Detector	Precision $\mathrm{V}_{\text {OUT }}$ Offset Control, Shutdown, Adjustable Offset
$\underline{\text { LTC5532 }}$	300MHz to 7GHz Precision RF Power Detector	Precision V ${ }_{\text {Out }}$ Offset Control, Adjustable Gain and Offset
LT5534	50MHz to 3GHz Log RF Power Detector with 60dB Dynamic Range	$\pm 1 \mathrm{~dB}$ Output Variation over Temperature, 38ns Response Time, Log Linear Response
LTC5536	Precision 600MHz to 7GHz RF Power Detector with Fast Comparator Output	25ns Response Time, Comparator Reference Input, Latch Enable Input, -26 dBm to +12 dBm Input Range
LT5537	Wide Dynamic Range Log RF/IF Detector	Low Frequency to 1GHz, 83dB Log Linear Dynamic Range

