
1
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

Atmel MSL3040/41/50/60/80/86/87/88
Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers
with Integrated Boost Controller and Phase Shifted Dimming

APPLICATION NOTE

Description:

The MSL3040/41/50/60/80/86/87/88 LED drivers offer a complete solution to drive up to eight parallel
LED strings at up to 40V. The LED current sinks of the MSL3050, MSL3060, MSL3080, MSL3086,
MSL3087, and MSL3088 control up to 60mA each, and the MSL3040 and MSL3041 current sinks control
up to 120mA each, for up to 19W of LED power. The MSL3050, MSL3060 and MSL3080 allow parallel
driver connection, increasing string current capability. A single resistor sets LED current with string
matching and accuracy within ±3%. Each driver varies by the number of current sinks and features (see
Table 1 below). Basic features include integrated boost regulator controller, PWM circuitry that allows
up to 4095:1 dimming, phase-shifted LED PWM dimming, up to eight LED drive outputs, integrated or
separate duty cycle and frequency control inputs, a 1MHz I2C compatible serial interface and internal
registers for PWM dimming control. Additionally, integrated fault detection circuitry acts on string open-
circuit and LED short circuit faults, boost regulator over-voltage faults, and die over-temperature faults.
The proprietary Efficiency Optimizer minimizes power use while maintaining proper LED current, and
supports interconnecting multiple drivers to power more than eight strings while maintaining optimum
efficiency.

Table 1. LED Driver Parts Comparison

PART

NUMBER
OF LED

STRINGS

MAX
CURRENT

PER
STRING

PHASE
SHIFTED
STRING

DRIVERS

INTERNAL
BOOST

CONTROLLER

RESISTOR SET
LED SHORT

CIRCUIT
THRESHOLD

SEPARATE
SYNC

INPUT*** BEST FOR

MSL3086 8 60mA YES YES YES NO MONITOR, INDUSTRIAL PANEL

MSL3087* 8 60mA YES NO YES NO SMALL TV

MSL3088 8 60mA YES YES NO YES SMALL TV

MSL3080

8 60mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

4** 120mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

2** 240mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

1** 480mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

MSL3040* 4 120mA YES YES YES NO MONITOR, AUTOMOTIVE

MSL3041* 4 120mA YES YES YES YES MONITOR, AUTOMOTIVE

MSL3050*
5 60mA NO YES YES NO INDUSTRIAL PANEL

1** 300mA NO YES YES NO INDUSTRIAL PANEL

MSL3060*

6 60mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

3** 120mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

2** 180mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

1** 360mA NO YES YES NO MONITOR, INDUSTRIAL PANEL

* Future product, contact factory for information.
** Drivers without phase shift allow parallel connection of string drive outputs for increased string current.
*** Drivers with separate SYNC input expect two input control signals, one for dimming duty cycle and one for dimming frequency.

DBIE-20120802

2
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

Table of Contents

1.0 Document Scope ... 3
2.0 Hardware ... 4
3.0 Basic Operation ... 5
4.0 I²C/SMBus Compatible Serial Interface ... 6
 4.1 Overview & Timing ...6

 4.2 I2C Bus Timeout ...6

 4.3 I2C Bit Transfer...7

 4.4 I2C START and STOP Conditions ..7

 4.5 I2C START and STOP Conditions ..7

 4.6 I2C Slave Address ..8

 4.7 I2C Message Format for Writing to the MSL3040/41/50/60/80/86/87/888

 4.8 I2C Message Format for Reading Registers ..9

 4.9 Register Map ...10

 4.10 Register Details ... 11

 4.11 System Control Register 0x01 ... 11

 4.12 Fault Enable Register 0x02 ... 11

 4.13 String Fault Enable Register 0x03 ...12

 4.14 Short Circuit Threshold Control Register 0x04 ..12

 4.15 Fault Status Register 0x05 ..12

 4.16 String Open Circuit Status Register 0x06 ..13

 4.17 String Short Circuit Status Register 0x07 ..13

 4.18 String Enable Status Register 0x08 ...13

 4.19 Boost/Boot-Load Status Register 0x09 ...13

 4.20 Efficiency Optimizer DAC Readback Register 0x0C ...13

 4.21 Efficiency Optimizer Status Register 0x0D ..13

 4.22 PWM Control Register 0x10 ..14

 4.23 PWM Frequency/Phase Registers 0x11 and 0x12 ..15

 4.24 PWM Duty Cycle Registers 0x13 and 0x14 ...15

 4.25 Reserved registers 0x20-0x23 ...15

 4.26 Sleep Registers 0x7F ..15

 4.27 Efficiency Optimizer Control Registers 0x84 and 0x85* ..16

3
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

1.0 Document Scope

This MSL3040/41/50/60/80/86/87/88 Programmers Guide is an addendum to the datasheets MSL3040/MSL3041, MSL3050/MSL3060/MSL3080

and MSL3086/MSL3087/MSL3088, and gives detailed information and instructions on how to configure, monitor, and control the LED drivers

through the I2C compatible serial interface. These drivers operate without I2C serial port access; using the serial port allows access to advanced

features, dimming modes, fault detection and monitoring modes, and test and debug features.

All registers are volatile and reset when power is removed, when the driver is turned off by the hardware enable input (EN), or when automatically

shut-off due to an over-temperature event. If a configuration other than the default programmed configuration is used, it must be loaded each time

the driver is turned on. Note that non-standard configurations are available from the factory, contact the factory for information.

Register default values for each driver are listed in the Register Details section where appropriate.

4
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

2.0 Hardware

Figure 1.1: LED Driver Block Diagram

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 2 of 15

Hardware ___

Figure 1. LED Driver Block Diagram

Basic Operation __
All MSL30xx drivers, except the MSL3087, include a boost regulator controller to make a voltage, VLED, that powers the
LEDs. The boost regulator accepts an input voltage of 5V to 32V and boosts it up to a maximum of 40V (limited by the
voltage stand-off rating of the STRn driver outputs). VLED is controlled by a resistive voltage divider, RTOP and RBOTTOM in
Figure 1 above, connected to the controller feedback input FB. The Efficiency Optimizer monitors LED driver voltage and
drives FB to control the VLED voltage to minimize power use while assuring proper LED current. The MSL3087 controls an
external boost regulator with its Efficiency Optimizer output, FBO, which also allows daisy-chaining with other drivers in
the family to drive additional strings from a single optimized power supply. Provision is made for boost regulator control
loop compensation via the COMP input.

Internally or externally generated PWM dimming signals gate the LED string current-sink outputs STRn (the number of
strings vary for different members of the MSL30xx family, Table 1 on page 1). A single external PWM signal connected to
the PWM input distributes to all strings via the string drive logic (Figure 1), with most drivers phase shifting the dimming
signals (Table 1). The additional SYNC input allows separate frequency control for the MSL3088 and MSL3041. All
drivers allow internal register control of PWM dimming frequency and duty cycle (in the place of external inputs) via the
I2C compatible serial interface. All parts in this family have a requirement of minimum on time of 3µs.

5
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

3.0 Basic Operation

All MSL30xx drivers, except the MSL3087, include a boost regulator controller to make a voltage, VLED, that powers the LEDs. The boost regulator

accepts an input voltage of 5V to 32V and boosts it up to a maximum of 40V (limited by the voltage stand-off rating of the STRn driver outputs).

VLED is controlled by a resistive voltage divider, RTOP and RBOTTOM in Figure 1 above, connected to the controller feedback input FB. The Efficiency

Optimizer monitors LED driver voltage and drives FB to control the VLED voltage to minimize power use while assuring proper LED current. The

MSL3087 controls an external boost regulator with its Efficiency Optimizer output, FBO, which also allows daisy-chaining with other drivers in the

family to drive additional strings from a single optimized power supply. Provision is made for boost regulator control loop compensation via the

COMP input.

Internally or externally generated PWM dimming signals gate the LED string current-sink outputs STRn (the number of strings vary for different

members of the MSL30xx family, Table 1 on page 1). A single external PWM signal connected to the PWM input distributes to all strings via the

string drive logic (Figure 1), with most parts in the family phase shifting the dimming signals (Table 1). The additional SYNC input allows separate

frequency control for the MSL3088 and MSL3041. All drivers allow internal register control of PWM dimming frequency and duty cycle (in the place

of external inputs) via the I2C compatible serial interface. All parts in this family have a requirement of minimum on time of 3µs.

6
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.0 I²C/SMBus Compatible Serial Interface

4.1 Overview & Timing

The I2C serial interface allows access to the control and status registers. The Register Map section shows register definitions and the
Register Details section shows detailed register functions and default settings. The MSL3040/41/50/60/80/86/87/88 operate as I²C/SMBus
slaves that send and receive data to a master. The interface is needed only to allow control and monitoring over some functions and
advanced features, and is not required for basic operation. When not using the serial interface, connect SDA and SCL to GND.

The serial interface is suitable for 100kHz, 400kHz and 1MHz communication. The interface uses bi-directional data line SDA and clock
input SCL to achieve bidirectional communication between master and slaves. The FLTB fault output optionally alerts the host system to
faults. During over temperature shutdown the serial interface is disabled and register settings are reset to their default values.

The master, typically a microcontroller, initiates all data transfers, and generates the clock that synchronizes the transfers. SDA operates
as both an input and an open-drain output. SCL operates only as a slave input (master output), and does not perform clock-stretching. Use
pull-ups on SDA, SCL and FLTB.

Figure 4.1: I2C Interface Connections

A transmission consists of a START condition sent by a master, a 7-bit slave address plus one R/W bit, an acknowledge bit, none or many
data bytes each separated by an acknowledge bit, and a STOP condition (Figure 4.2, Figure 4.3 and Figure 4.4).

Figure 4.2: I2C Serial Interface Timing Details

4.2 I2C Bus Timeout

The bus timeout feature (register 0x02 bit D7) allows the MSL3040/41/50/60/80/86/87/88 to reset the serial bus interface if a communication
ceases before a STOP condition is sent. If either SCL or SDA is low for more than 30ms (typical), then the transaction terminates, SDA
releases and the interface waits for another START condition.

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 3 of 15

I²C/SMBus Compatible Serial Interface ___________________________________
Overview and Timing
The I2C serial interface allows access to the control and status registers. The Register Map section shows register
definitions and the Register Details section shows detailed register functions and default settings. The
MSL3040/41/50/60/80/86/87/88 operate as I²C/SMBus slaves that send and receive data to a master. The interface is
needed only to allow control and monitoring over some functions and advanced features, and is not required for basic
operation. When not using the serial interface, connect SDA and SCL to GND.

The serial interface is suitable for 100kHz, 400kHz and 1MHz communication. The interface uses bi-directional data line
SDA and clock input SCL to achieve bidirectional communication between master and slaves. The FLTB fault output
optionally alerts the host system to faults. During over temperature shutdown the serial interface is disabled and register
settings are reset to their default values.

The master, typically a microcontroller, initiates all data transfers, and generates the clock that synchronizes the transfers.
SDA operates as both an input and an open-drain output. SCL operates only as a slave input (master output), and does
not perform clock-stretching. Use pull-ups on SDA, SCL and FLTB.

Figure 2. I2C Interface Connections

A transmission consists of a START condition sent by a master, a 7-bit slave address plus one R/W bit, an acknowledge
bit, none or many data bytes each separated by an acknowledge bit, and a STOP condition (Figure 3, Figure 4 and Figure
5).

START
CONDITION

REPEATED START
CONDITION

START
CONDITION

STOP
CONDITION

tHD:STA
tR tF

tHIGH

tLOW

tSU:DAT

tHD:DAT

tSU:STA
tHD:STA

tSU:STO

tBUF

SDA

SCL

Figure 3. I2C Serial Interface Timing Details

I2C Bus Timeout
The bus timeout feature (register 0x02 bit D7) allows the MSL3040/41/50/60/80/86/87/88 to reset the serial bus interface if
a communication ceases before a STOP condition is sent. If either SCL or SDA is low for more than 30ms (typical), then
the transaction terminates, SDA releases and the interface waits for another START condition.

I2C Bit Transfer
One data bit is transferred during each clock pulse. Ensure SDA is stable while SCL is high.

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 3 of 15

I²C/SMBus Compatible Serial Interface ___________________________________
Overview and Timing
The I2C serial interface allows access to the control and status registers. The Register Map section shows register
definitions and the Register Details section shows detailed register functions and default settings. The
MSL3040/41/50/60/80/86/87/88 operate as I²C/SMBus slaves that send and receive data to a master. The interface is
needed only to allow control and monitoring over some functions and advanced features, and is not required for basic
operation. When not using the serial interface, connect SDA and SCL to GND.

The serial interface is suitable for 100kHz, 400kHz and 1MHz communication. The interface uses bi-directional data line
SDA and clock input SCL to achieve bidirectional communication between master and slaves. The FLTB fault output
optionally alerts the host system to faults. During over temperature shutdown the serial interface is disabled and register
settings are reset to their default values.

The master, typically a microcontroller, initiates all data transfers, and generates the clock that synchronizes the transfers.
SDA operates as both an input and an open-drain output. SCL operates only as a slave input (master output), and does
not perform clock-stretching. Use pull-ups on SDA, SCL and FLTB.

Figure 2. I2C Interface Connections

A transmission consists of a START condition sent by a master, a 7-bit slave address plus one R/W bit, an acknowledge
bit, none or many data bytes each separated by an acknowledge bit, and a STOP condition (Figure 3, Figure 4 and Figure
5).

START
CONDITION

REPEATED START
CONDITION

START
CONDITION

STOP
CONDITION

tHD:STA
tR tF

tHIGH

tLOW

tSU:DAT

tHD:DAT

tSU:STA
tHD:STA

tSU:STO

tBUF

SDA

SCL

Figure 3. I2C Serial Interface Timing Details

I2C Bus Timeout
The bus timeout feature (register 0x02 bit D7) allows the MSL3040/41/50/60/80/86/87/88 to reset the serial bus interface if
a communication ceases before a STOP condition is sent. If either SCL or SDA is low for more than 30ms (typical), then
the transaction terminates, SDA releases and the interface waits for another START condition.

I2C Bit Transfer
One data bit is transferred during each clock pulse. Ensure SDA is stable while SCL is high.

7
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.3 I2C Bit Transfer

One data bit is transferred during each clock pulse. Ensure SDA is stable while SCL is high.

Figure 4.3: I2C Bit Transfer

4.4 I2C START and STOP Conditions

Both SCL and SDA remain high when the interface is free. The master signals a transmission with a START condition by transitioning SDA
from high to low while SCL is high. When the master has finished communicating with the slave, it issues a STOP condition by transitioning
SDA from low to high while SCL is high. The bus is then free.

Figure 4.4: I2C START and STOP Conditions

4.5 I2C Acknowledge Bit

The acknowledge bit is a clocked 9th bit which the recipient uses to handshake receipt of each 8-bit byte of data. The master generates
the 9th clock pulse, and the recipient holds SDA low during the high period of the clock pulse. When the master is transmitting to the slave,
the slave pulls SDA low because the slave is the recipient. When the slave is transmitting to the master, the master pulls SDA low because
the master is the recipient.

Figure 4.5: I2C Acknowledge

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 4 of 15

Figure 4. I2C Bit Transfer

I2C START and STOP Conditions
Both SCL and SDA remain high when the interface is free. The master signals a transmission with a START condition by
transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it
issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free.

SDA
TRANSMITTER

SCL

START
CONDITION

ACKNOWLEDGE BY
RECEIVER

SDA
RECEIVER

1 2 8 9 1

NOT ACKNOWLEDGE
BY RECEIVER

Figure 5. I2C START and STOP Conditions

I2C Acknowledge Bit
The acknowledge bit is a clocked 9th bit which the recipient uses to handshake receipt of each 8-bit byte of data. The
master generates the 9th clock pulse, and the recipient holds SDA low during the high period of the clock pulse. When the
master is transmitting to the slave, the slave pulls SDA low because the slave is the recipient. When the slave is
transmitting to the master, the master pulls SDA low because the master is the recipient.

Figure 6. I2C Acknowledge

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 4 of 15

Figure 4. I2C Bit Transfer

I2C START and STOP Conditions
Both SCL and SDA remain high when the interface is free. The master signals a transmission with a START condition by
transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it
issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free.

SDA
TRANSMITTER

SCL

START
CONDITION

ACKNOWLEDGE BY
RECEIVER

SDA
RECEIVER

1 2 8 9 1

NOT ACKNOWLEDGE
BY RECEIVER

Figure 5. I2C START and STOP Conditions

I2C Acknowledge Bit
The acknowledge bit is a clocked 9th bit which the recipient uses to handshake receipt of each 8-bit byte of data. The
master generates the 9th clock pulse, and the recipient holds SDA low during the high period of the clock pulse. When the
master is transmitting to the slave, the slave pulls SDA low because the slave is the recipient. When the slave is
transmitting to the master, the master pulls SDA low because the master is the recipient.

Figure 6. I2C Acknowledge

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 4 of 15

Figure 4. I2C Bit Transfer

I2C START and STOP Conditions
Both SCL and SDA remain high when the interface is free. The master signals a transmission with a START condition by
transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it
issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free.

SDA
TRANSMITTER

SCL

START
CONDITION

ACKNOWLEDGE BY
RECEIVER

SDA
RECEIVER

1 2 8 9 1

NOT ACKNOWLEDGE
BY RECEIVER

Figure 5. I2C START and STOP Conditions

I2C Acknowledge Bit
The acknowledge bit is a clocked 9th bit which the recipient uses to handshake receipt of each 8-bit byte of data. The
master generates the 9th clock pulse, and the recipient holds SDA low during the high period of the clock pulse. When the
master is transmitting to the slave, the slave pulls SDA low because the slave is the recipient. When the slave is
transmitting to the master, the master pulls SDA low because the master is the recipient.

Figure 6. I2C Acknowledge

8
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.6 I2C Slave Address

The MSL3040/41/50/60/80/86/87/88 have a 7-bit long slave address, 0b1010000, followed by an eighth bit, the R/W bit, that combine to
make 2 separate 8-bit read and write addresses (i.e. the slave addresses are 0xA0 for write operations and 0xA1 for read operations).
The R/W bit is low for a write and high for a read. All MSL3040/41/50/60/80/86/87/88 have the same 0xA0/0xA1 slave address; when using
multiple drivers and communicating with them through their serial interfaces, make external provision to route the serial interface to the
appropriate driver.

Figure 4.6: I2C Slave Address

4.7 I2C Message Format for Writing to the MSL3040/41/50/60/80/86/87/88

A write to the MSL3040/41/50/60/80/86/87/88 contains the slave address, the R/W bit cleared to 0, and at least 1 byte of information. The
first byte of information is the register address byte. The register address byte is stored as a register pointer, and determines which register
the following byte is written into. If the MSL3040/41/50/60/80/86/87/88 detect a STOP condition after the register address byte is received,
then it takes no further action beyond setting the register pointer.

Figure 4.7: I2C Writing a Register Pointer

When no STOP condition is detected, the byte transmitted after the register address byte is a data byte, and is placed into the register
pointed to by the register address byte. To simplify writing to multiple consecutive registers, the register pointer auto-increments during each
following acknowledge period; further data bytes transmitted before a STOP condition fill subsequent registers.

Figure 4.8: I2C Writing Two Data Bytes

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 5 of 15

I2C Slave Address
The MSL3040/41/50/60/80/86/87/88 have a 7-bit long slave address, 0b1010000, followed by an eighth bit, the R/W bit,
that combine to make 2 separate 8-bit read and write addresses (i.e. the slave addresses are 0xA0 for write operations
and 0xA1 for read operations). The R/W bit is low for a write and high for a read. All MSL3040/41/50/60/80/86/87/88 have
the same 0xA0/0xA1 slave address; when using multiple drivers and communicating with them through their serial
interfaces, make external provision to route the serial interface to the appropriate driver.

SDA

SCL 1 2 3 4 5 6 7 8 9

A7 = 1 AA6 = 0 A5 = 1 A4 = 0 A5 =0 A6 = 0 A7 = 0 R / W

MSB

Figure 7. I2C Slave Address

I2C Message Format for Writing to the MSL3040/41/50/60/80/86/87/88
A write to the MSL3040/41/50/60/80/86/87/88 contains the slave address, the R/W bit cleared to 0, and at least 1 byte of
information. The first byte of information is the register address byte. The register address byte is stored as a register
pointer, and determines which register the following byte is written into. If the MSL3040/41/50/60/80/86/87/88 detect a
STOP condition after the register address byte is received, then it takes no further action beyond setting the register
pointer.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

.

THE REGISTER POINTER NOW POINTS TO X; A SUBSEQUENT READ
ACCESS READS FROM REGISTER ADDRESS X

ACKNOWLEDGE
FROM SLAVE

Figure 8. I2C Writing a Register Pointer

When no STOP condition is detected, the byte transmitted after the register address byte is a data byte, and is placed into
the register pointed to by the register address byte. To simplify writing to multiple consecutive registers, the register
pointer auto-increments during each following acknowledge period; further data bytes transmitted before a STOP
condition fill subsequent registers.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A A D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

DATA WRITES TO
REGISTER X

D7.

THE REGISTER POINTER NOW POINTS TO X + 2; A SUBSEQUENT READ
ACCESS BEGINS READING FROM REGISTER ADDRESS X + 2

.D7 D0.

DATA WRITES TO
REGISTER X + 1

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

Figure 9. I2C Writing Two Data Bytes

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 5 of 15

I2C Slave Address
The MSL3040/41/50/60/80/86/87/88 have a 7-bit long slave address, 0b1010000, followed by an eighth bit, the R/W bit,
that combine to make 2 separate 8-bit read and write addresses (i.e. the slave addresses are 0xA0 for write operations
and 0xA1 for read operations). The R/W bit is low for a write and high for a read. All MSL3040/41/50/60/80/86/87/88 have
the same 0xA0/0xA1 slave address; when using multiple drivers and communicating with them through their serial
interfaces, make external provision to route the serial interface to the appropriate driver.

SDA

SCL 1 2 3 4 5 6 7 8 9

A7 = 1 AA6 = 0 A5 = 1 A4 = 0 A5 =0 A6 = 0 A7 = 0 R / W

MSB

Figure 7. I2C Slave Address

I2C Message Format for Writing to the MSL3040/41/50/60/80/86/87/88
A write to the MSL3040/41/50/60/80/86/87/88 contains the slave address, the R/W bit cleared to 0, and at least 1 byte of
information. The first byte of information is the register address byte. The register address byte is stored as a register
pointer, and determines which register the following byte is written into. If the MSL3040/41/50/60/80/86/87/88 detect a
STOP condition after the register address byte is received, then it takes no further action beyond setting the register
pointer.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

.

THE REGISTER POINTER NOW POINTS TO X; A SUBSEQUENT READ
ACCESS READS FROM REGISTER ADDRESS X

ACKNOWLEDGE
FROM SLAVE

Figure 8. I2C Writing a Register Pointer

When no STOP condition is detected, the byte transmitted after the register address byte is a data byte, and is placed into
the register pointed to by the register address byte. To simplify writing to multiple consecutive registers, the register
pointer auto-increments during each following acknowledge period; further data bytes transmitted before a STOP
condition fill subsequent registers.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A A D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

DATA WRITES TO
REGISTER X

D7.

THE REGISTER POINTER NOW POINTS TO X + 2; A SUBSEQUENT READ
ACCESS BEGINS READING FROM REGISTER ADDRESS X + 2

.D7 D0.

DATA WRITES TO
REGISTER X + 1

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

Figure 9. I2C Writing Two Data Bytes

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 5 of 15

I2C Slave Address
The MSL3040/41/50/60/80/86/87/88 have a 7-bit long slave address, 0b1010000, followed by an eighth bit, the R/W bit,
that combine to make 2 separate 8-bit read and write addresses (i.e. the slave addresses are 0xA0 for write operations
and 0xA1 for read operations). The R/W bit is low for a write and high for a read. All MSL3040/41/50/60/80/86/87/88 have
the same 0xA0/0xA1 slave address; when using multiple drivers and communicating with them through their serial
interfaces, make external provision to route the serial interface to the appropriate driver.

SDA

SCL 1 2 3 4 5 6 7 8 9

A7 = 1 AA6 = 0 A5 = 1 A4 = 0 A5 =0 A6 = 0 A7 = 0 R / W

MSB

Figure 7. I2C Slave Address

I2C Message Format for Writing to the MSL3040/41/50/60/80/86/87/88
A write to the MSL3040/41/50/60/80/86/87/88 contains the slave address, the R/W bit cleared to 0, and at least 1 byte of
information. The first byte of information is the register address byte. The register address byte is stored as a register
pointer, and determines which register the following byte is written into. If the MSL3040/41/50/60/80/86/87/88 detect a
STOP condition after the register address byte is received, then it takes no further action beyond setting the register
pointer.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

.

THE REGISTER POINTER NOW POINTS TO X; A SUBSEQUENT READ
ACCESS READS FROM REGISTER ADDRESS X

ACKNOWLEDGE
FROM SLAVE

Figure 8. I2C Writing a Register Pointer

When no STOP condition is detected, the byte transmitted after the register address byte is a data byte, and is placed into
the register pointed to by the register address byte. To simplify writing to multiple consecutive registers, the register
pointer auto-increments during each following acknowledge period; further data bytes transmitted before a STOP
condition fill subsequent registers.

SDA 1 0 1 0 0 0 0 0 A D7 D0 A A D0 A

ACKNOWLEDGE FROM
SLAVESTART STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

DATA WRITES TO
REGISTER X

D7.

THE REGISTER POINTER NOW POINTS TO X + 2; A SUBSEQUENT READ
ACCESS BEGINS READING FROM REGISTER ADDRESS X + 2

.D7 D0.

DATA WRITES TO
REGISTER X + 1

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

ACKNOWLEDGE FROM
SLAVE

Figure 9. I2C Writing Two Data Bytes

9
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.8 I2C Message Format for Reading Registers

Read the registers using one of two techniques.

The first technique begins the same way as a write, by setting the register address pointer as shown in Figure 4.7, including the STOP
condition (note that even though the final objective is to read data, the R/W bit is first sent as a write because the address pointer byte is
being written). Follow the Figure 4.7 transaction by that shown in Figure 4.9, with a new START condition and the slave address, this time
with the R/W bit set to 1 to indicate a read. Then, after the slave initiated acknowledge bit, clock out as many bytes as desired, separated
by master initiated acknowledges. The pointer auto-increments during each master initiated acknowledge period. End the transmission with
a not-acknowledge followed by a stop condition.

Figure 4.9: I2C Reading Register Data with Preset Register Pointer

The second read technique is illustrated in Figure 4.10. Set the register pointer as shown in Figure 4.6 without sending a STOP condition,
send a repeated START condition after the second acknowledge bit, then send the slave address again with the R/W bit set to 1 to indicate
a read. Then clock out the data bytes separated by master initiated acknowledge bits. The register pointer auto-increments during each
master initiated acknowledge period. End the transmission with a not-acknowledge followed by a stop condition. Use this technique for
buses with multiple masters, because the read sequence is performed in one continuous transaction.

 Figure 4.10: I2C Reading Register Data Using a Repeated START

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 6 of 15

I2C Message Format for Reading Registers
Read the registers using one of two techniques.

The first technique begins the same way as a write, by setting the register address pointer as shown in Figure 8, including
the STOP condition (note that even though the final objective is to read data, the R/W bit is first sent as a write because
the address pointer byte is being written). Follow the Figure 8 transaction by that shown in Figure 10, with a new START
condition and the slave address, this time with the R/W bit set to 1 to indicate a read. Then, after the slave initiated
acknowledge bit, clock out as many bytes as desired, separated by master initiated acknowledges. The pointer auto-
increments during each master initiated acknowledge period. End the transmission with a not-acknowledge followed by a
stop condition.

Figure 10. I2C Reading Register Data with Preset Register Pointer

The second read technique is illustrated in Figure 11. Set the register pointer as shown in Figure 7 without sending a
STOP condition, send a repeated START condition after the second acknowledge bit, then send the slave address again
with the R/W bit set to 1 to indicate a read. Then clock out the data bytes separated by master initiated acknowledge bits.
The register pointer auto-increments during each master initiated acknowledge period. End the transmission with a not-
acknowledge followed by a stop condition. Use this technique for buses with multiple masters, because the read
sequence is performed in one continuous transaction.

SDA 1 0 1 0 0 0 0 0 A D7

REPEATED
START

D0 A 1 1 A4 A3 A2 A1 1 A D0 A

ACKNOWLEDGE
FROM SLAVE

0

START STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

SLAVE ADDRESS,
READ ACCESS

READ REGISTER
ADDRESS X

D7.

THE REGISTER POINTER NOW POINTS TO X + 1; A SUBSEQUENT READ
ACCESS BEGINS READING FROM REGISTER ADDRESS X + 1

ACKNOWLEDGE
FROM SLAVE

NOT ACKNOWLEDGE
FROM MASTER

.

ACKNOWLEDGE
FROM SLAVE

Figure 11. I2C Reading Register Data Using a Repeated START

MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 6 of 15

I2C Message Format for Reading Registers
Read the registers using one of two techniques.

The first technique begins the same way as a write, by setting the register address pointer as shown in Figure 8, including
the STOP condition (note that even though the final objective is to read data, the R/W bit is first sent as a write because
the address pointer byte is being written). Follow the Figure 8 transaction by that shown in Figure 10, with a new START
condition and the slave address, this time with the R/W bit set to 1 to indicate a read. Then, after the slave initiated
acknowledge bit, clock out as many bytes as desired, separated by master initiated acknowledges. The pointer auto-
increments during each master initiated acknowledge period. End the transmission with a not-acknowledge followed by a
stop condition.

Figure 10. I2C Reading Register Data with Preset Register Pointer

The second read technique is illustrated in Figure 11. Set the register pointer as shown in Figure 7 without sending a
STOP condition, send a repeated START condition after the second acknowledge bit, then send the slave address again
with the R/W bit set to 1 to indicate a read. Then clock out the data bytes separated by master initiated acknowledge bits.
The register pointer auto-increments during each master initiated acknowledge period. End the transmission with a not-
acknowledge followed by a stop condition. Use this technique for buses with multiple masters, because the read
sequence is performed in one continuous transaction.

SDA 1 0 1 0 0 0 0 0 A D7

REPEATED
START

D0 A 1 1 A4 A3 A2 A1 1 A D0 A

ACKNOWLEDGE
FROM SLAVE

0

START STOP

SLAVE ADDRESS,
WRITE ACCESS

SET REGISTER
POINTER TO X

SLAVE ADDRESS,
READ ACCESS

READ REGISTER
ADDRESS X

D7.

THE REGISTER POINTER NOW POINTS TO X + 1; A SUBSEQUENT READ
ACCESS BEGINS READING FROM REGISTER ADDRESS X + 1

ACKNOWLEDGE
FROM SLAVE

NOT ACKNOWLEDGE
FROM MASTER

.

ACKNOWLEDGE
FROM SLAVE

Figure 11. I2C Reading Register Data Using a Repeated START

10
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.9 Register Map

 The I2C slave ID is 0xA0 for read and 0xA1 for write. Do not change bits that are not described.

ADDRESS AND
REGISTER NAME

FUNCTION
REGISTER DATA

D7 D6 D5 D4 D3 D2 D1 D0

 Configuration Registers

0x00 strEnRg LED String Enables strEn[7:0]

0x01 sysCtrlRg System Control - eoEn - -
actOnBst

OVFlt
actOnStr

SCFlt
actOnStr

OCFlt
-

0x02 fltEnRg Fault Detect Enable I2CTimeOutEn - - - bstOVFltEn strSCEn strOCEn fboOCFltEn

0x03 strFltEnRg String Fault Enable fltEnStr[7:0]

0x04 sCThCtrlRg SC Threshold control - - scQualDly scDbncDly - - scThrshLvl[1:0]

 Power / Fault Status Registers

0x05 fltStsRg Fault Status fltBDrv - - - bstOVFltDet strSCDet strOCDet fboOCFltDet

0x06 strOCStsRg String Open Circuit Fault Status strOC[7:0]

0x07 strSCStsRg String Short Circuit Fault Status strSC[7:0]

0x08 strEnStsRg String Enable Status after auto fault handling strEnSts[7:0]

0x09 bstStsRg Boost/Boot-Load Status adPwmEn blRecovDone blDone - - bstOVFlt bstPwrGood bstSftStrtDone

 Efficiency Optimizer Status

0x0C eoDacRg EO DAC Read back eoDac[7:0]

0x0D eoStsRg EO Status - - - fboOCFlt - eoDacAct eoCal eoInitCal

 PWM Control Registers

0x10 pwmCtrlRg PWM Control - dcMsrMode phaShft phaShftpairs intDuty intFreq pwmDrct syncPol

0x11
freqPhaRg Internal Frequency and Phase

freqPha [7:0]

0x12 freqPha[15:8]

0x13
dutyCycRg Internal Duty Cycle

dutyCyc[7:0]

0x14 freqMul[1:0] - - dutyCyc[11:8]

0x20
Reserved Reserved

‘0x00’

0x21 - ‘0x0’

0x22
Reserved Reserved

‘0x00’

0x23 - ‘0x0’

Power Management Register

0x7F sleepRg Put part to sleep and enable power savings sleep slpPwrSv - - - - - -

Efficiency Optimizer Control Registers (MSL3087 only)

0x84 eoCtrl0Rg EO Control Register 0 hdrmStep[1:0] aCalDly[1:0] stepDly[1:0] iSinkConfDly[1:0]

0x85 eoCtrl1Rg EO Control Register 1 decrStep[1:0] incrStep[1:0] iCalPWM aCal100 aCalEn iChkDis

11
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.10 Register Details

The following sections describe the MSL3040/41/50/60/80/86/87/88 registers. Factory default settings are listed where appropriate. Where
default values differ between driver types, the defaults for each are listed. Bits labelled “-“ are reserved; do not change them, defective
operation may result. Bits labelled “x” are not used, and so may be written to with any value without adverse effects on operation.

String Enable Register 0x00

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x00 strEnRg strEn7 strEn6 strEn5 strEn4 strE3 strEn2 strEn1 strEn0

MSL3040/41 0x0F 0 0 0 0 1 1 1 1

MSL3050 0x1F 0 0 0 1 1 1 1 1

MSL3060 0x3F 0 0 1 1 1 1 1 1

MSL3080/86/87/88 0xFF 1 1 1 1 1 1 1 1

StrEnn: Set String Enable bits to 1 to enable, and clear them to 0 to disable the corresponding LED driver strings. The Efficiency Optimizer
and the fault logic ignore disabled outputs.

4.11 System Control Register 0x01

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x01 sysCtrlRg 0x4E x eoEn x x
actOnBst

OVFlt
actOnStr

SCFlt
actOnStr

OCFlt
x

• eoEn: Efficiency Optimizer Enable; Set to 1 to enable the Efficiency Optimizer to dynamically control the boost regulator output voltage,
Clear to 0 to disable control of the boost regulator output voltage.

• actOnBstOVFlt: Act On Boost Over Voltage Fault; Set to 1 to turn off all LED strings upon detection of a boost over-voltage condition;
this fault is non-latching, strings turn on when the fault goes away. Clear to 0 to ignore boost over-voltage condition. This actOnBstOVFlt
bit is ignored when bstOVFltEn (bit D3 of 0x02) = 0.

• actOnStrSCFlt: Act On String Short Circuit Fault; Set to 1 to turn off LED strings that detect an LED short circuit fault, Clear to 0 to leave
LED strings on that detect an LED short circuit fault. Set the short circuit threshold voltage with the Short Circuit Threshold bits D0 and
D1 of register 0x04. The Efficiency Optimizer ignores outputs that are turned off by an LED short circuit fault. This actOnStrSCFlt bit is
ignored when strSCEn (bit D2 of 0x02) = 0.

• actOnStrOCFlt: Act On String Open Circuit Fault; Set to 1 to stop driving LED strings that are open circuit, Clear to 0 to continue driving
LED strings that are open circuit. Regardless of the state of this bit, the Efficiency Optimizer disregards strings that are open circuit.
When actOnStrOCFlt is low the phase engine does not re-calculate phase shifts when a string open circuit occurs. actOnStrOCFlt bit is
ignored when strOCEn (bit D1 of 0x02) = 0.

4.12 Fault Enable Register 0x02

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x02 fltEnRg 0x8F
I2CTime
OutEn

x x x bstOVFltEn strSCEn strOCEn fboOCFltEn

• I2CTimeOutEn: I2C Time Out Enable. Set to 1 to enable I2C bus transaction timeout when the bus is stalled beyond 30ms, Clear to 0 to
disallow I2C bus time out.

• bstOVFltEn: Boost Over-Voltage Fault Enable; Set to 1 to have a boost over-voltage fault pull FLTB low, Clear to 0 to not pull FLTB low
when a boost over-voltage faults occurs. This fault is non-latching.

• StrSCEn: String Short Circuit Fault Enable; Set to 1 to have LED short circuit faults pull FLTB low, Clear to 0 to have LED short circuit
faults not pull FLTB low.

• strOCEn: String Open Circuit Fault Enable; Set to 1 to have string open circuit faults pull FLTB low, Clear to 0 to have string open circuit
faults not pull FLTB low. When this bit is zero and a string open circuit fault occurs, the Efficiency Optimizer attempts to bring the string
back in to current regulation by increasing the boost regulator output voltage up to its highest value, where it remains without indicating
a fault condition. In this state fictitious LED short circuit faults may occur.

• fboOCFltEn: Feedback Out Open Circuit Fault Enable; Set to 1 to have feedback open circuit faults pull FLTB low, Clear to 0 to have
feedback open circuit faults not pull FLTB low. The feedback connection is labelled FBO on the MSL3087, and FB on all others.

12
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.13 String Fault Enable Register 0x03

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x03 strFltEnRg 0xFF strFltEn7 strFltEn6 strFltEn5 strFltEn4 strFltEn3 strFltEn2 strFltEn1 strFltEn0

• strFltEnn: Individual string fault enable bits. Set to 1 to enable string fault detection, Clear to 0 to disable string fault detection.

4.14 Short Circuit Threshold Control Register 0x04

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x04 sCThCtrlRg 0b0000 00__ x x scQualDly scDbncDly - x scThrshLvl[1:0]

• scQualDly: LED Short Circuit Qualification Delay; Clear to 0 for a 256ms short circuit qualification delay, Set to 1 for a 512ms short
circuit qualification delay. An LED short circuit must last for the full qualification delay time to be flagged as a fault.

• scDbncDly: LED Short Circuit De-bounce Delay; Clear to 0 for a 2µs short circuit de-bounce delay, Set to 1 for a 4µs short circuit de-
bounce delay.

• scThrshLvl[1:0]: Short Circuit Threshold Setting; 0b00 = 4.9V, 0b01 = 5.8V, 0b10 = 6.8V, 0b11 = 7.6V. scThrshLvl auto-programs when
EN is taken high. The value scThrshLvl takes is based on the value of the resistor connected from SCTH to GND, RSCTH (Table 2).
MSL3088 has no SCTH input; these bits default to 0b10 = 6.8V.

Table 4.1: Short Circuit Threshold Resistor (RSCTH)

RSCTH scThrshLvl[1:0] Threshold Voltage

1.0kΩ (or GND) 0b00 4.9V

27kΩ 0b01 5.8V

68kΩ 0b10 6.8V

330kΩ (or OPEN) 0b11 7.6V

4.15 Fault Status Register 0x05

ADDRESS AND
REGISTER NAME

DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x05 fltStsRg
Read Only
Clear on

read
fltBDrv x x x

bstOV
FltDet

strSCDet strOCDet
fboOC
FltDet

• fltBDrv: FLTB Driver; equals 1 when any fault is detected (any bit D0 through D3 is 1). When fltBDrv = 1, the hardware FLTB output is low.

• bstOVFltDet: Boost Over-Voltage Fault Detected; equals 1 when boost over-voltage fault is detected (non-latching).

• strSCDet: String Short Circuit Fault Detected; sets to 1 when any string short circuit fault is detected.

• strOCDet: String Open Circuit Fault Detected; sets to 1 when any string open circuit fault is detected.

• fboOCFltDet: FB Open Circuit Fault Detected; sets to 1 when FB open circuit fault is detected.

Clear faults by reading fault register 0x05 and writing 0xFF to registers 0x06 and 0x07, or by toggling EN low then high.

13
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.16 String Open Circuit Status Register 0x06

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x06 strOCStsRg Read-only Clear on write strOC7 strOC6 strOC5 strOC4 strOC3 strOC2 strOC1 strOC0

• strOCn: Each bit sets to 1 to indicate that the driver detected an open circuit fault on the corresponding string; read to determine which
strings are faulted. Clear faults by reading fault register 0x05 and writing a ‘1’ to the bit showing a fault, or by toggling EN low then high.

4.17 String Short Circuit Status Register 0x07

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x07 strSCStsRg Read-only Clear on write strSC7 strsC6 strSC5 strSC4 strSC3 strSC2 strSC1 strSC0

• strSCn: Each bit sets to 1 to indicate that the driver detected a short circuit fault on the corresponding string; read to determine which
strings are faulted. Clear faults by reading fault register 0x05 and writing a ‘1’ to the bit showing a fault, or by toggling EN low then high.

4.18 String Enable Status Register 0x08

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x08 strEnSts Read-only strEnSts7 strEnSts6 strEnSts5 strEnSts4 strEnSts3 strEnSts2 strEnSts1 strEnSts0

• strEnStsn: Each bit sets to 1 to indicate that the corresponding string is turned off due to the enable register 0x00 or due to faults.

4.19 Boost/Boot-Load Status Register 0x09

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x09 bstStsRg Read-only -
blRecovD

one
blDone x x bstOVFlt

bstPwr
Good

bstSftStrt
Done

• blRecovDone: Boot-Load Recovery Complete. Sets to 1 when all trim and control registers are ready; signals the boost regulator to begin soft start.

• blDone: Boot-load complete; sets to 1 after the initial register values are loaded.

• bstOVFlt: Boost Over Voltage Fault; sets to 1 when boost controller over-voltage fault is detected (not latching).

• bstPwrGood: Boost Power Good; sets to 1 when boost output power is in regulation.

• bstSftStrtDone: Boost Soft Start Done. Sets to 1 when the boost soft-start is complete; drivers are disabled until bstSftStrDone transitions high.

4.20	 Efficiency	Optimizer	DAC	Readback	Register	0x0C

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x0C eoDacRg Read Only eoDacRg(7:0

• eoDacRg[7:0]: Reports the EO DAC setting, which determines EO (FBO on MSL3087, FB on all other drivers) output current at 1.1µA
per LSB, which in turn controls the boost regulator output voltage.

4.21	 Efficiency	Optimizer	Status	Register	0x0D

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x0D eoStsRg Read-only - - - fboOCFlt - eoDacAct eoCal eoInitCal

• fboOCFlt: Feedback Out Open Circuit Fault; equals 1 when the driver detects an open circuit at feedback (FBO on MSL3087, FB on all
other drivers).

• eoDacAct: Efficiency optimizer DAC active; equals 1 when feedback (FBO on MSL3087, FB on all other drivers) is sourcing current to
the boost regulator feedback node to control the boost regulator output voltage.

• eoCal: Efficiency Optimizer Calibration; equals 1 when the EO is calibrating. The EO automatically re-calibrates VOUT every 1 second.
An EO Calibration will also occur immediately when it detects a loss of string current regulation.

• eoInitCal: Efficiency Optimizer Initial Calibration; equals 1 when the EO is performing an initial calibration. Initial Calibration takes a
maximum of 0.52 seconds.

14
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.22 PWM Control Register 0x10

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x10 pwmCtrlRg x dcMsrMode phaShft phaShftPairs intDuty intFreq pwmDrct syncPol

MSL3040 0x72 0 1 1 1 0 0 1 0

MSL3041 0x70 0 1 1 1 0 0 0 0

MSL50/60/86/87 0x62 0 1 1 0 0 0 1 0

MSL3080 0x42 0 1 0 0 0 0 1 0

MSL3088 0x60 0 1 1 0 0 0 0 0

• dcMsrMode: Duty Cycle Measure Mode; determines response to a PWM input of less than 20Hz. When dcMsrMode = 1 and the PWM
input is 20Hz or greater, the PWM dimming outputs take the duty cycle of the PWM input signal. When dcMsrMode = 1 and the PWM input
is less than 20Hz the PWM dimming output duty cycle is fixed at 0% when the input is low, and is fixed at 100% when the input is high.
When dcMsrMode = 0 and the PWM input is 20Hz or greater, the PWM dimming signals take the duty cycle of the PWM input signal. When
dcMsrMode = 0 and the PWM input is less than 20Hz, the PWM dimming output duty cycle is fixed at the last valid measured duty cycle
before the input fell to less than 20Hz. This allows a PWM input to set the output duty cycle (with a signal above 20Hz) and then cease
while the outputs continue PWM dimming of the LED strings. When pwmDrct = 1 and phaShft = 1, this bit needs to be set to 1.

• phaShft: Phase Shift; Set to 1 to phase shift the string PWM dimming, Clear to 0 for synchronous PWM dimming. Phase shift control is
valid regardless of the settings of bits D1, D2 and D3 of this register.

• phaShftPairs: Phase Shift in Pairs; Set to 1 to phase shift the string PWM dimming so that adjacent strings operate as pairs, synchronizing
STR0 to STR1, STR2 to STR3, STR4 to STR5 and STR6 to STR7. Clear to 0 for independent string PWM dimming phase.

• intDuty: Internal Duty Cycle; Set to 1 to use registers 0x13 and 0x14 to set the PWM dimming duty cycle, Clear to 0 to use the signal at
the PWM input to set the duty cycle. pwmDrct (Bit D1) = 1 overrides this bit. See Table 3 below.

• intFreq: Internal Frequency; Set to 1 to use registers 0x11 and 0x12 to set the PWM dimming frequency, Clear to 0 to use the signal at
the PWM input (SYNC input for MSL3041 and MSL3088) to set the PWM dimming frequency. pwmDrct (Bit D1) = 1 overrides this bit. See
Table 3 below.

• pwmDrct: PWM Direct; Set to 1 to use the signal at the PWM input to control both the PWM dimming frequency and duty cycle, Clear to 0
to use settings indicated by intDuty (bit D2) and intFreq (bit D3) to determine PWM dimming frequency and duty cycle. See Table 3 below.

• syncPol: Sync Polarity; Set to 1 to synchronize string PWM dimming to the rising edge of the signal at the SYNC input, Clear to 0 to
synchronize to the falling edge. This bit is valid only for the MSL3041 and MSL3088, and ignored by the other drivers.

Table 4.2: Internal/External Frequency and Duty Cycle Selection

REGISTER BITS
MSL3041/50/60/80/86/87

STRING DRIVERS GET
MSL3040/88

STRING DRIVERS GET

pwmDrct intDuty intFreq DUTY CYCLE FREQUENCY DUTY CYCLE FREQUENCY

INFORMATION FROM INFORMATION FROM

0 0 0 PWM INPUT PWM INPUT PWM INPUT SYNC INPUT

0 0 1 PWM INPUT 0x11, 0x12 PWM INPUT 0x11, 0x12*

0 1 0 0x13, 0x14 PWM INPUT 0x13, 0x14* SYNC INPUT

0 1 1 0x13, 0x14* 0x11, 0x12* 0x13, 0x14* 0x11, 0x12*

1 x x PWM INPUT PWM INPUT PWM INPUT PWM INPUT

*Assure that unused PWM and SYNC inputs are held to logic low.
x = don’t care
NOTE: Regardless of the dimming technique used a minimum on-time of 3µs is required.

15
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.23 PWM Frequency/Phase Registers 0x11 and 0x12

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x11
freqPhaRg

0x00 freqPha[7:0]

0x12 0x00 freqPha[15:8]

• freqPha[15:0]: PWM Frequency or Phase Setting Registers. When internal frequency is selected via register 0x10, the PWM dimming
frequency equals 20MHz divided by the decimal value of this 16-bit register pair. When using an external signal to set the PWM dimming
frequency (SYNC), this register pair determines the delay time between the edge of the input signal transition and the beginning of the first
enabled string PWM dimming on-time, where the delay time is 50ns times the decimal value of the lower 12-bits; when phase shifting is
enabled, subsequent strings are phase delayed using the first string as the zero-time reference.

4.24 PWM Duty Cycle Registers 0x13 and 0x14

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x13
dutyCycRg

0x00 dutyCyc[7:0]

0x14 0x00 freqMul[1:0] x x dutyCyc[11:8]

• dutyCyc: 12-bit PWM Duty Cycle Registers. When internal duty cycle is selected, using register 0x10, PWM dimming duty cycle is a
linear relation where 0x000 = 0% and 0xFFF = 100%. A minimum on-time of 3 µs is required.

• freqMul: SYNC Frequency Multiplier; acts on both internally and externally generated PWM frequency. The PWM control signal
frequency (either applied to PWM or SYNC inputs, or internally generated) is multiplied by the decimal value of these two bits, taken as
LSB = 2^0 and MSB = 2^1, plus 1 to generate the string PWM dimming frequency. This allows synchronized PWM dimming at multiples
of the LCD panel refresh rate. For instance, when freqMul = 0b00 the multiplication factor = 0*(2^1) + 0*(2^0) + 1 = 1.

4.25 Reserved registers 0x20-0x23

These four registers are reserved and should maintain a value of 0x00 for all four bytes.

4.26 Sleep Registers 0x7F

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x7F sleepRg 0x00 Sleep slpPwrSv x x - - x x

• sleep and slpPwrSv: Sleep and Sleep Power Save; use these bits together to enter/exit low power sleep mode. When sleep = slpPwrSv
= 1 the driver is asleep and input current is reduced to less than 1.8mA, when sleep = slpPwrSv = 0 the driver operates fully. When
asleep, all the registers maintain their states and the I2C remains active. Table 4 presents low power controls and behaviours.

Table 4. Low Power Controls and Behaviors

EXTERNAL
INPUT

CONTROL BITS BEHAVIOR

EN* sleep slpPwrSv LEDS
BOOST

REGULATOR
GATE DRIVER

IVIN

RECOVERY

MAX
RECOVERY

TIME

INITITAL
CALIBRATION

CYCLE
SOFT START

0 x x OFF OFF <10µA 520ms YES YES

1 0 x ON ON <20mA NA NA NA

1 1 0 OFF ON** <10mA 520ms YES NA

1 1 1 OFF OFF <1.8mA 520ms YES YES

NA = Not Applicable
x = Don’t care
* Taking EN from 0 to 1 returns all register bits to their factory default values.
** VLED goes to VOUT(MAX); this state is available but not recommended.

16
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

4.27	 Efficiency	Optimizer	Control	Registers	0x84	and	0x85*

ADDRESS & REGISTER NAME DEFAULT D7 D6 D5 D4 D3 D2 D1 D0

0x84 eoCtrl0Rg 0x00 hdrmStep[1:0] aCalDly[1:0] stepDly[1:0] iSinkConfDly[1:0]

0x85 eoCtrl1Rg 0x02 decrStep[1:0] incrStep[1:0] iCaPWM aCal100 aCalEn iChkDis

*These registers are available only on the MSL3087 and determine how the FBO output controls the external boost regulator.

An initial power supply voltage calibration occurs when the EO is started; the EO is started at power-up, when exiting from sleep or when
EN is taken high.

• hdrmStep: Headroom Step. Bits D6 and D7 of 0x84 set the number of steps the EO takes when raising the boost regulator output
voltage after detecting a current sink error during any calibration cycle; 0b00 = 6 steps, 0b01 = 3 steps, 0b10 = 9 steps and 0b11 = 12
steps. Fewer steps improves efficiency, while more steps offers better immunity from power supply transients and noise. incrStep, bits
D4 and D5 of 0x85, controls the FBO current change of each step.

• aCalDly: Auto-Calibration Delay. Bits D4 and D5 of 0x84 set the time delay between consecutive EO auto-recalibration cycles; 0b00 =
1s, 0b01 = 0.5s, 0b10 = 2s and 0b11 = 4s.

• stepDly: Step Delay. Bits D2 and D3 of 0x84 set the delay time between consecutive boost regulator output voltage corrections; 0b00
= 2ms, 0b01 = 1ms, 0b10 = 4ms and 0b11 = 8ms. Set the correction delay to longer than the power supply settling time.

• iSinkConfDly: Current Sink Confirmation Delay. Bits D0 and D1 of 0x84 set the current sink error confirmation delay time; 0b00 = 0.5µs,
0b01 = 0.25µs, 0b10 = 1µs, 0b11 = 2µs. The current sink error confirmation delay is the time that the current sink error must persist
before the EO recognizes it as a current sink error condition. This prevents erroneous current sink error detection due to noise and other
transients. The driver uses a current sync error to determine that LED string voltage is too low and needs to be increased to maintain
current regulation.

• decrStep: Decrement Step. Bits D6 and D7 control the size of the EO voltage control current changes that happen during Efficiency
Optimizer initial calibration; 0b00 = 3 LSBs, 0b01 = 1 LSB, 0b10 = 2 LSBs and 0b11 = 4 LSB. Each current change equals the
decrStep[1:0] value multiplied by the 1.1µA FBO DAC LSB current value. For example, if decrStep[1:0] = 0b10 then the step setting is 2
LSBs, and each current step is 2 * 1.1µA = 2.2µA. The change in VLED for each step is equal to the change in EO voltage control current
times the value of the top resistor in the boost regulator output voltage divider, RTOP (see datasheet for details).

• incrStep: Increment Step. Bits D4 and D5 of 0x85 control the size of the EO voltage control current correction steps that it takes after
a current sink error is detected. Each correction step current size equals the decimal equivalent of incrStep[1:0] plus 1 multiplied by the
1.1µA FBO DAC LSB current value. For example, if incrStep[1:0] = 0b10 then the step setting is 3, and each current step is 3 * 1.1µA
= 3.3µA. The number of correction steps taken is controlled by hdrmStep, bits D6 and D7 of 0x84. The change in VLED for each step is
equal to the change in EO voltage control current times the value of the top resistor in the boost regulator output voltage divider, RTOP
(see datasheet for details).

• iCalPWM: Initialize Calibration with PWM. Set to 1 to use PWM dimming during EO initial calibration. Clear to 0 to use 100% duty cycle
during EO initial calibration; when initial calibration is complete the driver begins PWM dimming.

• aCal100: Auto Re-Calibration at 100% Duty Cycle. Bit D2 of 0x85; Set to 1 to use 100% duty cycle during auto recalibration. Clear to 0
to use the user controlled PWM dimming during auto recalibration.

• aCalEn: Automatic Re-Calibration Enable. Bit D1 of 0x85; Set to 1 to enable automatic EO boost regulator output voltage recalibration,
Clear to 0 to not auto-recalibrate after initial calibration is complete. EO automatic recalibration periodically minimizes the boost regulator
output voltage after initial calibration to maintain optimal efficiency as the LED string voltage changes with time or temperature. aCalDly
bits D4 and D5 of 0x84 set the delay time between consecutive EO recalibration cycles. Regardless of the aCalEn setting, the EO
always maintains sufficient LED string current sink headroom by raising the boost regulator output voltage should a current regulation
error occur.

• iChkDis: Current Check Disable. Bit D0 of 0x85; Set to 1 to disable current sink error detection for the EO, Clear to 0 to enable current
sink error detection. The EO uses a current sync error to determine that LED string voltage is too low and needs to be increased to
maintain current regulation. Use iChkDis as a debugging or testing tool, not for final production code. Clear eoEn (bit D6 in register 0x01)
to 0 before setting iChkDis to 1. When iChkDis = 1 and eoEn = 1 the EO output forces the string power supply to its minimum output
voltage, possibly causing fictitious string short circuit faults. Setting iChkDis = 1 disables open circuit fault detection of all LED strings.

17
Atmel MSL3040/41/50/60/80/86/87/88 Programmers Guide

4-String 120mA and 5/6/8-String 60mA LED Drivers with Integrated Boost Controller
and Phase Shifted Dimming Boost Controller and Phase Shifted Dimming

Figure 4.11. Efficiency Optimizer Initial Calibration Cycle
MSL3040/41/50/60/80/86/87/88 Programmers Guide

 Page 15 of 15

Figure 12. Efficiency Optimizer	Initial	Calibration	Cycle	

© 2012 Atmel Corporation. All rights reserved. / Rev.: MSL3040/41/50/60/80/86/87/88 Programmers Guide DBIE-20120802
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products.
EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

