

Typical Applications

The HMC951LP4E is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Military Radar, EW & ELINT
- Satellite Communications

Functional Diagram

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Features

Conversion Gain: 13 dB Image Rejection: 20 dB LO to RF Isolation: 48 dB Noise Figure: 2.3 dB

Input IP3: 3 dBm

24 Lead 4x4 mm SMT Package: 16 mm²

General Description

The HMC951LP4E is a compact GaAs MMIC I/Q downconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 13 dB with a noise figure of 2 dB and 25 dB of image rejection across the frequency band. The HMC951LP4E utilizes an LNA followed by an image reject mixer which is driven by an LO buffer amplifier. The image reject mixer eliminates the need for a filter following the LNA, and removes thermal noise at the image frequency. I and Q mixer outputs are provided and an external 90° hybrid is needed to select the required sideband. The HMC951LP4E is a much smaller alternative to hybrid style image reject mixer downconverter assemblies, and is compatible with surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, IF = 1000 MHz, LO = 0 dBm, Vdd = 5 V LSB [1]

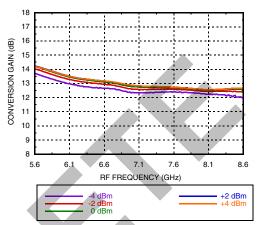
Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF		5.6 - 8.6		GHz
Frequency Range, LO		3 - 12.1		
Frequency Range, IF		DC - 3.5		
Conversion Gain (As IRM)	10	13		dB
Noise Figure		2		dB
Image Rejection	13	25		dBc
1 dB Compression (Input)		-3		dBm
LO to RF Isolation	40	48		dB
LO to IF Isolation	20	30		dB
IP3 (Input)		3		dBm
Amplitude Balance [2]		1		dB
Phase Balance [2]		-7		deg
Total Supply Current @LO = 0dBm [3]				
Idd		55	60	mA
ldd1		78	85	,
ldd2		97	105	

^[1] Data taken as IRM with external IF 90° Hybrid.

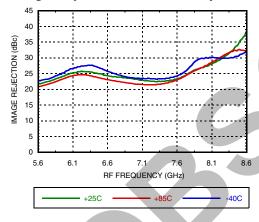
^[2] Data taken without external 90° hybrid, IF = 1000 MHz.

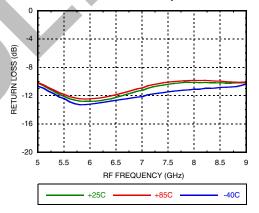
^[3] Current is set by the external bias resistor. Idq of LO Amp = 140 mA.

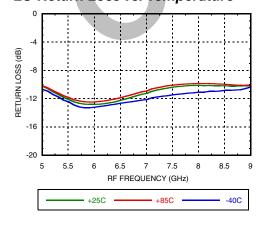


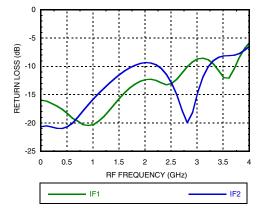

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken As IRM With External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain LSB vs. Temperature


Conversion Gain LSB vs. LO Drive

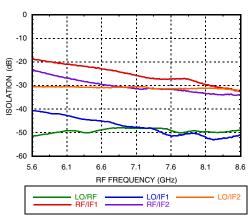

Image Rejection LSB vs. Temperature

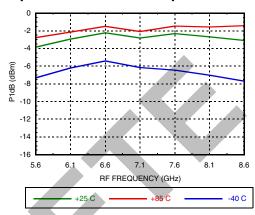

RF Return Loss vs. Temperature

LO Return Loss vs. Temperature

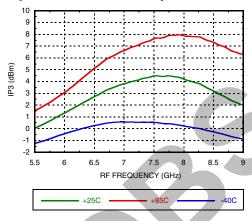
IF Return Loss [1]

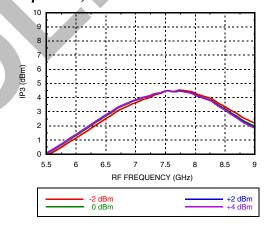
[1] Data taken without external 90° hybrid.

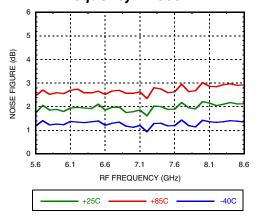



GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz

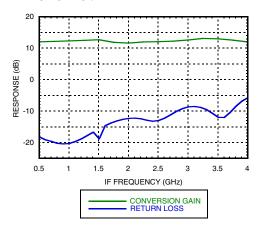

Isolations

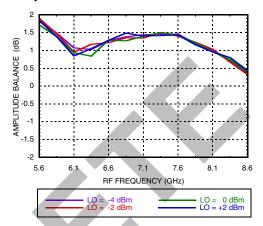

Input P1dB LSB vs. Temperature


Input IP3, LSB vs. Temperature

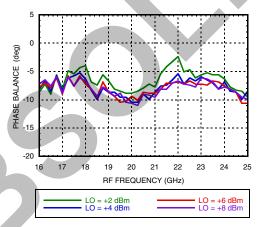
Input IP3, LSB vs. LO Drive

Noise Figure vs. Temperature, IF Frequency = 1000 MHz



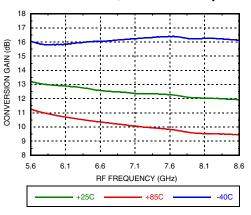

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

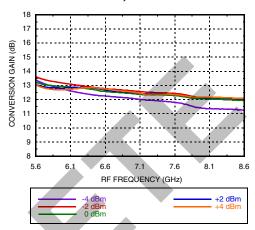
Quadrature Channel Data Taken Without IF 90° Hybrid, IF = 1000 MHz


IF Bandwidth

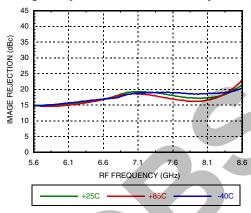
Amplitude Balance vs. LO Drive [1]

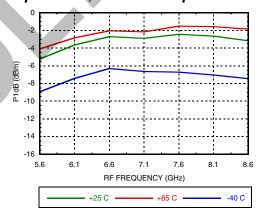
Phase Balance vs. LO Drive [1]

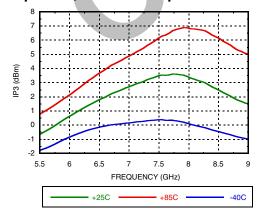


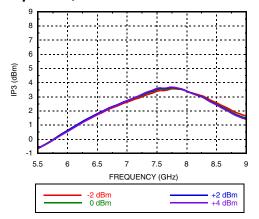

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz


Conversion Gain, USB vs. Temperature

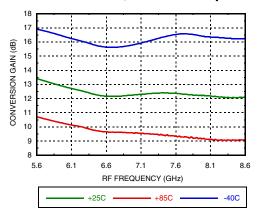

Conversion Gain, USB vs. LO Drive

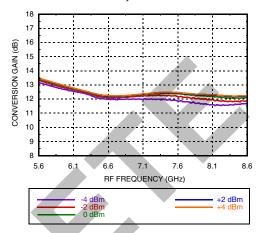

Image Rejection USB vs. Temperature


Input P1dB, USB vs. Temperature

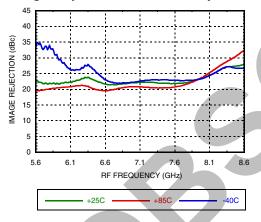
Input IP3, USB vs. Temperature

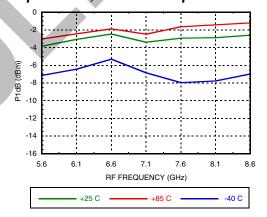
Input IP3, USB vs. LO Drive

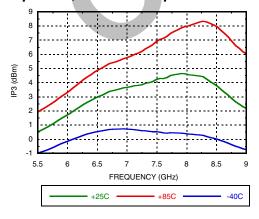


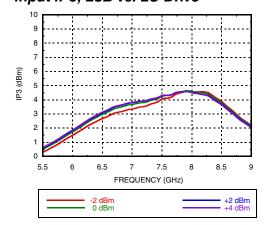

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, LSB vs. Temperature

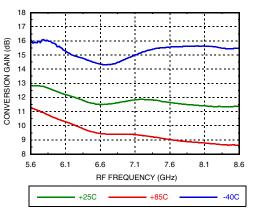

Conversion Gain, LSB vs. LO Drive

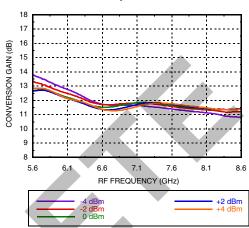

Image Rejection LSB vs. Temperature


Input P1dB, LSB vs. Temperature

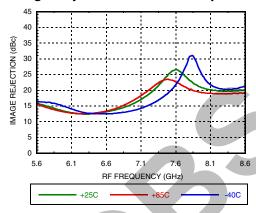
Input IP3, LSB vs. Temperature

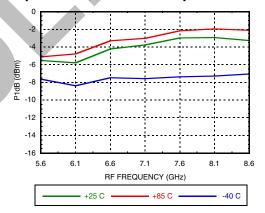
Input IP3, LSB vs. LO Drive

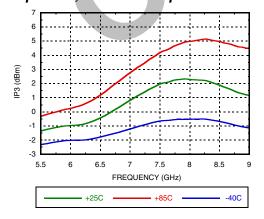


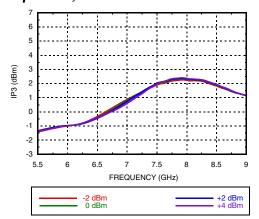

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


Image Rejection USB vs. Temperature


Input P1dB, USB vs. Temperature

Input IP3, USB vs. Temperature

Input IP3, USB vs. LO Drive

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

MxN Spurious Outputs

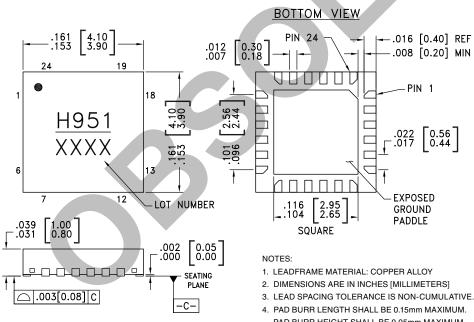
	nLO				
mRF	0	1	2	3	4
0	х	34	59	67	56
1	23	0	52	71	80
2	64	50	56	91	95
3	92	93	53	45	90
4	90	115	102	67	64

RF = 6.1 GHz @ -20 dBm

LO = 7.1 GHz @ 0 dBm

Data taken without IF hybrid

All values in dBc below IF power level (LO - RF = 1 GHz)


Absolute Maximum Ratings

RF	+15 dBm
LO Drive	+20 dBm
Vdd	+5.5V
Channel Temperature	150 °C
Continuous Pdiss (T=85°C) (derate 21.6 mW/°C above 85°C)	1.4 W
Thermal Resistance (R _{TH}) (channel to package bottom)	46.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

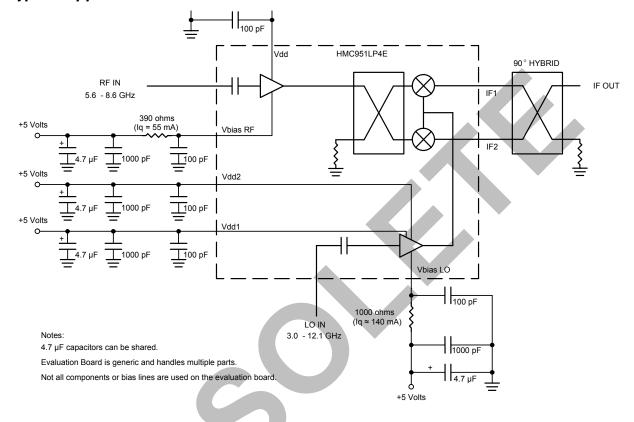
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC951LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H951 XXXX

^{[1] 4-}Digit lot number XXXX

^[2] Max peak reflow temperature of 260 °C

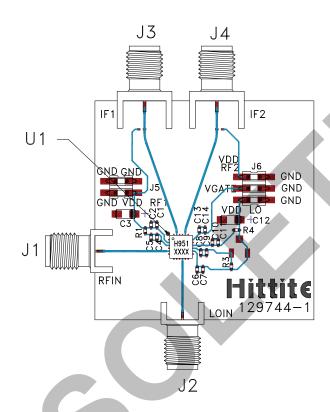
GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 4, 6, 7, 8, 9, 11, 12, 13, 19, 21, 22, 24	GND	These pins and package bottom must be connected to RF/DC ground	→ GND —
2	VDD	Power supply voltage for RF Amplifier. Bypass capacitors are required. See application circuit	Vdd O
3	VBIAS_RF	This pin is used to set the DC current of the RF amplifier by selection of the external bias resistor. See application circuit.	BIAS VBIAS_RF ESD ESD
5	RFIN	This pin is the RF input pin. It is AC coupled and matched to 50 Ohms	RFIN O
10	LOIN	This pin is the LO input pin. It is AC coupled and matched to 50 Ohms	LOIN O—
14, 16	VDD1, VDD2	Power supply voltages for LO Amplifier. Bypass capacitors are required. See application circuit	Vdd1, OVdd2
15	VBIAS_LO	This pin is used to set the DC current of the LO amplifier by selection of the external bias resistor. See application circuit.	BIAS VBIAS_LO ESD ESD
17, 18	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
20	IF2	This pin is DC coupled. For applications not requiring operations to DC this port should be DC blocked externally using a series capacitor whose value has been chosen to	IF1,IF2
23	IF1	pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Typical Application Circuit



GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Evaluation PCB

List of Materials for Evaluation PCB 131372 [1]

Item	Description	
J1, J2	PCB Mount SMA RF Connector, SRI	
J3, J4	PCB Mount SMA Connector, Johnson	
J5, J6	DC Pins	
C1, C4, C6, C8, C10, C13	100 pF Capacitor, 0402 Pkg.	
C2, C5, C7, C9, C11, C14	1000 pF Capacitor, 0402 Pkg.	
C3, C12	4.7 μF Capacitor,1206 Pkg.	
R1	390 Ohm Resistor, 0402 Pkg.	
R3	1 kOhm Resistor, 0402 Pkg.	
R4	0 Ohm Resistor, 0402 Pkg.	
U1	HMC951LP4E	
PCB [2]	129744 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350

5.6 - 8.6 GHz

GaAs MMIC I/Q DOWNCONVERTER

v03.0513

KERS - I/Q MIXERS, IRMS & RECEIVERS - SMT

ANALOGDEVICES

Notes:

