

SANYO Semiconductors DATA SHEET

Monolithic Digital IC

LB11660FV — Single-Phase Full-Wave Fan Motor Driver

Overview

The LB11660FV is a single-phase bipolar drive half-predriver motor driver that can easily implement a direct PWM driver motor driver circuit with excellent efficiency. The LB11660FV is particularly well suited for the miniature fans used in servers.

Features

- Single-phase full-wave drive (15V, 1.5A transistors are built in) Half predriver with integrated high side transistor
- Built-in variable speed function controlled by an external input
 The LB11660FV can implement quiet, low-vibration variable speed control using externally clocked high side transistor direct PWM drive.
- Minimum speed setting pin
- Current limiter circuit (The limit value is determined by Rf; $I_O = 1A$ when RF = 0.5 Ω)
- Built-in kickback absorption circuit
- Soft switching circuit makes low current consumption, low loss, and low noise drive possible at phase switching
- Built-in HB
- Built-in lock protection and automatic recovery circuits (built-in on/off ratio switching circuit controlled by the supply voltage)
- FG (speed detection) output
- Built-in thermal protection circuit (design guarantee)

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LB11660FV

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
V _{CC} maximum supply voltage	V _{CC} max		20	٧
VM maximum supply voltage	VM max		20	٧
OUT pin maximum output current	I _{OUT} max	Rf ≥ 0.39Ω	1.5	А
OUT pin output voltage 1	V _{OUT} max 1		20	٧
OUT pin output voltage 2	V _{OUT} max 2	T ≤ 0.4μs	26.5	V
PRE pin maximum source current	IPSO max		30	mA
PRE pin maximum sink current	IPSI max		-7	mA
PRE pin output voltage	VP max		20	V
HB maximum output current	HB max		10	mA
VTH input pin voltage	VTH max		7	٧
FG output pin voltage	VFG max		18	٧
FG output current	IFG max		10	mA
Allowable power dissipation	Pd max	When mounted on a circuit board *1	0.8	W
Operating temperature	Topr	*2	-30 to +90	°C
Storage temperature	Tstg		-55 to +150	°C

^{*1} Specified circuit board : 114.3 \times 76.1 \times 1.6mm³, glass epoxy.

Recommended Operating Conditions at Ta = 25°C

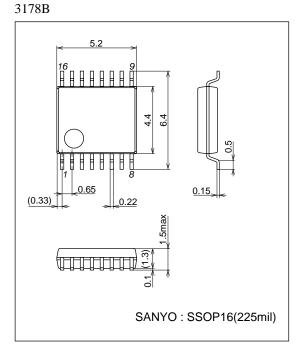
Parameter	Symbol	Conditions	Ratings	Unit
V _{CC} supply voltage	VCC		4 to 15	V
V _M supply voltage	VM		3 to 15	V
Current limiter operation range	ILIM		0.6 to 1.2	V
VTH input level voltage range	VTH		0 to 6	V
Hall sensor input common-mode	VICM		0.2 to 3	V
input voltage range				

Electrical Characteristics Unless otherwise specified Ta = 25°C, $V_{CC} = 12V$

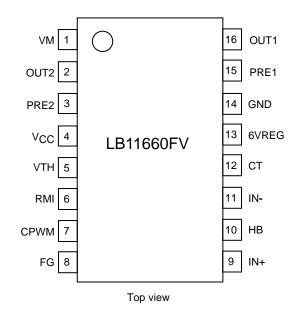
Down western	Oh - I	O and distance		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Circuit current	I _{CC} 1	Drive mode		9	12	mA	
HB voltage	VHB	IHB = 5mA	1.05	1.25	1.40	V	
6VREG voltage	V6VREG	6VREG = 5mA	5.80	6	6.20	V	
CT pin high-level voltage	VCTH		3.4	3.6	3.8	V	
CT pin low-level voltage	VCTL		1.4	1.6	1.8	V	
ICT pin charge current 1	ICTC1	V _{CC} = 12V	1.7	2.2	2.7	μΑ	
ICT pin charge current 2	ICTC2	V _{CC} = 6V	1.3	1.8	2.3	μΑ	
ICT pin discharge current 1	ICTD1	V _{CC} = 12V	0.11	0.15	0.19	μΑ	
ICT pin discharge current 2	ICTD2	V _{CC} = 6V	0.34	0.44	0.54	μΑ	
ICT charge/discharge current ratio 1	RCT1	V _{CC} = 12V	12	15	18	Times	
ICT charge/discharge current ratio 2	RCT2	V _{CC} = 6V	3	4	5	Times	
ICT charge/discharge ratio threshold voltage	VRCT		6	6.6	7.3	V	
VTH bias current	IBVTH		-2	-1	0	μΑ	
OUT output high saturation voltage	Voн	$I_O = 200$ mA, RL = 1Ω		0.6	0.8	V	

Continued on next page.

 $^{^*2}$: Tj max is 150°C. This device must be used under conditions such that the chip temperature does not exceed Tj = 150°C during operation.


LB11660FV

Description	0	Conditions		Ratings			
Parameter	Symbol	Symbol Conditions		min typ ma		Unit	
PRE output low saturation voltage	V _{PL}	I _O = 5mA		0.2	0.4	V	
PRE output high saturation voltage	V _{PH}	I _O = -20mA		0.9	1.2	V	
Current limiter	VRf	V _{CC} - VM	450	500	550	mV	
PWM output pin high-level voltage	VPWMH		2.2	2.5	2.8	V	
PWM output pin low-level voltage	VPWML		0.4	0.5	0.7	V	
PWM external C charge current	IPWM1		-23	-18	-14	μΑ	
PWM external C discharge current	IPWM2		18	24	30	μΑ	
PWM oscillator frequency	FPWM	C = 200pF	19	23	27	kHz	
Hall sensor input sensitivity	VHN	Zero peak value (including offset and hysteresis)		15	25	mV	
FG output pin low-level voltage	VFG/RD	IFG/RD = 5mA		0.2	0.3	V	
FG output pin leakage current	IFGL/IRDL	VFG/RD = 7V			30	μΑ	
Thermal protection circuit	THD	Design target value*3	150	180	210	°C	


^{*3:} This is a design guarantee and is not tested in individual units. The thermal protection circuit is included to prevent any thermal damage to the IC. Since this would imply operation outside the IC's guaranteed temperature range, the application thermal design must be such that the thermal protection circuit will not operate if the fan is operating constantly.

Package Dimensions

unit: mm (typ)

Pin Assignment

Truth Table

	. 48.0																		
IN-	IN+	VTH	CPWM	СТ	OUT1	OUT2	PRE1	PRE2	FG	Mode									
High	Low	Low	Low									12.1		High	Off	Low	High	Low	Domina a satatiana adaisa
Low	High			Low High		Off	High	High	Low	Off	During rotation – drive								
High	Low	High		Low	Off	Off	Low	High	Low	During rotation –									
Low	High		Low	LOW		Off	Off	High	Low	Off	regeneration								
High	Low	-	-		1.00.1	Off	Off	Low	High	Low	l - di masta eti an								
Low	High			-	High	Off	Off	High	Low	Off	Lock protection								

CPWM – High is the state where CPWM > VTH, and CPWM– Low is the state where CPWM < VTH.

Application Circuit Example 1

*1. Power supply and ground lines

The IC ground is the control current power supply system ground, and the external n-channel transistor ground is the motor power supply system ground.

These two systems should be formed from separate lines and the control system external components should be connected to the IC ground.

*2. Regeneration power supply stabilization capacitor

Use a $4.7\mu\text{F}/25\text{V}$ capacitor at least for CM, which is the power supply stabilization capacitor for both PWM drive and kickback absorption.

The capacitor CM must be connected to prevent destruction of the IC when power is applied or removed.

*3. Speed Control

(1) Control voltage

The PWM duty is determined by comparing the VTH pin voltage with the PWM oscillator waveform.

When the VTH voltage falls, the on duty increases and when the VTH voltage falls below the PWM output low level, the duty will go to 100%.

(2) Thermistor

For thermistor applications, normally the 6VREG level will be resistor divided and the divided level input to the VTH pin.

The PWM duty is changed by changes in the VTH pin voltage due to changes in temperature.

*4. Current limiter setting

The current limiter circuit operates if the voltage across the resistor between V_{CC} and the VM pin exceeds 0.5V.

Since the current limiter circuit applies limitation at a current determined by $I_O = VRf/Rf$ (where VRf = 0.5V (typical), Rf: resistance of the current detection resistor), the current limiter will operate at $I_O = 1A$ when $Rf = 0.5\Omega$.

The resistor RF must be connected in the circuit and it must have a value such that the circuit operates within the recommended current limiter operating range.

*5. Hall sensor input

Lines that are as short as possible must be used to prevent noise from entering the system. The Hall sensor input circuit consists of a comparator with hysteresis (20mV). We recommend that the Hall sensor input level be at least three times this hysteresis, i.e. at least 60mVp-p.

*6.PWM oscillator frequency setting capacitor

The PWM oscillator oscillates at f = 23 kHz when CP is 200pF and at f = 46 kHz when CP is 100pF, and this frequency becomes the PWM reference frequency.

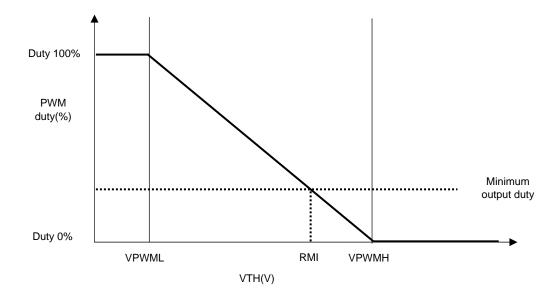
Note that the PWM frequency is given approximately by the following equation.

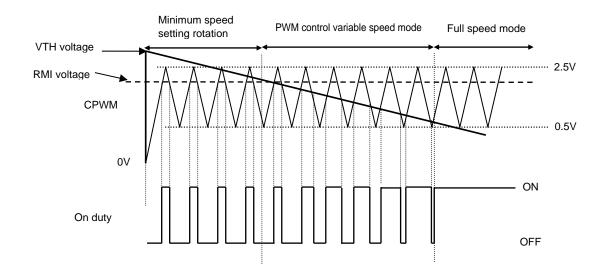
$$f [kHz] \approx (4.6 \times 10^6) \div C [pF]$$

*7.FG output

This is an open collector output, and a rotation count detection function can be implemented using this FG output, which corresponds to the phase switching. This pin must be left open if unused.

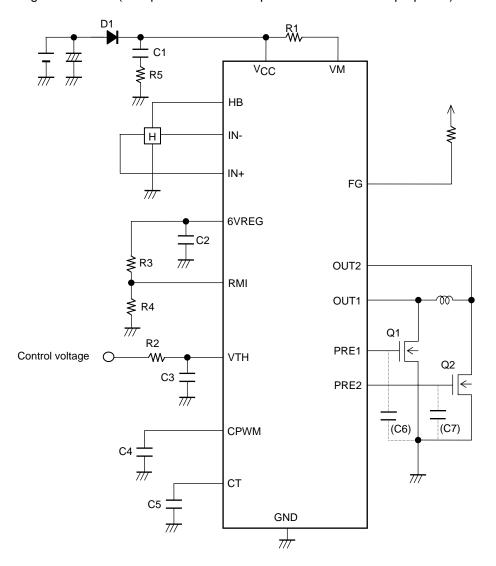
*8.**HB pin**


This pin provides a Hall effect sensor bias constant-voltage output of 1.25V.


*9. **RMI pin**

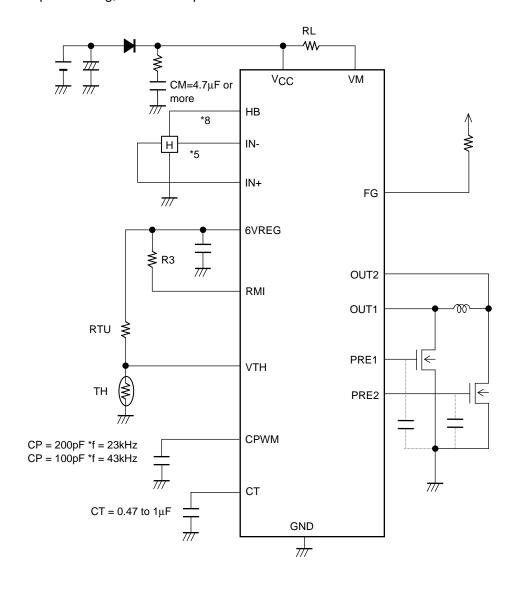
This pin is the speed control minimum speed setting.

The minimum output duty is set by R3 and R4. Leave R4 open to have the motor stop when the duty is 0%.

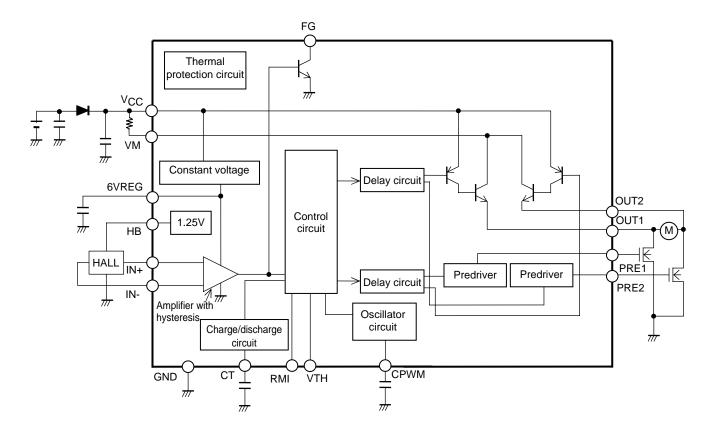

Rotation Control Timing Chart

Application Circuit Example 2

SANYO mounting circuit board (Component values are provided for reference purposes)



Parts List


: SBM30-03-Tr (SANYO) Q1, 2 : CPH3418 (SANYO) $: 0.51\Omega$ size 3225 **R**1 size 1608 R2 : $15k\Omega$ R3 : 39kΩ size 1608 : 20kΩ size 1608 R4 $: 2.2\Omega$ R5 size 1608 C1 $: 4.7 \mu F/25V \text{ size } 3216$ C2 : 2.2µF size 1608 C3 $: 2.2 \mu F$ size 1608 : 220pF size 1005 C4 C5 $: 0.47 \mu F$ size 1608 C6, 7: No connection

Application Circuit Example 3

No minimum speed setting, thermistor input used

Internal Equivalent Circuit Diagram

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.